The moment magnitude scale (MMS; denoted explicitly with or Mw, and generally implied with use of a single M for magnitude) is a measure of an earthquake's magnitude ("size" or strength) based on its seismic moment. It was defined in a 1979 paper by Thomas C. Hanks and Hiroo Kanamori. Similar to the local magnitude/Richter scale () defined by Charles Francis Richter in 1935, it uses a logarithmic scale; small earthquakes have approximately the same magnitudes on both scales. Despite the difference, news media often says "Richter scale" when referring to the moment magnitude scale. Moment magnitude () is considered the authoritative magnitude scale for ranking earthquakes by size. It is more directly related to the energy of an earthquake than other scales, and does not saturate - that is, it does not underestimate magnitudes as other scales do in certain conditions. It has become the standard scale used by seismological authorities like the U.S. Geological Survey for reporting large earthquakes (typically M > 4), replacing the local magnitude () and surface wave magnitude () scales. Subtypes of the moment magnitude scale (, etc.) reflect different ways of estimating the seismic moment. Richter magnitude scale At the beginning of the twentieth century, very little was known about how earthquakes happen, how seismic waves are generated and propagate through the earth's crust, and what information they carry about the earthquake rupture process; the first magnitude scales were therefore empirical. The initial step in determining earthquake magnitudes empirically came in 1931 when the Japanese seismologist Kiyoo Wadati showed that the maximum amplitude of an earthquake's seismic waves diminished with distance at a certain rate. Charles F. Richter then worked out how to adjust for epicentral distance (and some other factors) so that the logarithm of the amplitude of the seismograph trace could be used as a measure of "magnitude" that was internally consistent and corresponded roughly with estimates of an earthquake's energy.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (26)
ME-615: Introduction to earthquake source physics
This course presents the classical and new approaches required to study the source mechanisms of earthquakes, combining theory and observations in a unified methodology, with a key focus on the mechan
EE-548: Audio engineering
This lecture is oriented towards the study of audio engineering, with a special focus on room acoustics applications. The learning outcomes will be the techniques for microphones and loudspeaker desig
PHYS-101(en): General physics : mechanics (English)
Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c
Show more
Related publications (337)
Related concepts (6)
Seismic magnitude scales
Seismic magnitude scales are used to describe the overall strength or "size" of an earthquake. These are distinguished from seismic intensity scales that categorize the intensity or severity of ground shaking (quaking) caused by an earthquake at a given location. Magnitudes are usually determined from measurements of an earthquake's seismic waves as recorded on a seismogram. Magnitude scales vary on what aspect of the seismic waves are measured and how they are measured.
Richter magnitude scale
The Richter scale (ˈrɪktər), also called the Richter magnitude scale, Richter's magnitude scale, and the Gutenberg–Richter scale, is a measure of the strength of earthquakes, developed by Charles Francis Richter and presented in his landmark 1935 paper, where he called it the "magnitude scale". This was later revised and renamed the local magnitude scale, denoted as ML or .
Peak ground acceleration
Peak ground acceleration (PGA) is equal to the maximum ground acceleration that occurred during earthquake shaking at a location. PGA is equal to the amplitude of the largest absolute acceleration recorded on an accelerogram at a site during a particular earthquake. Earthquake shaking generally occurs in all three directions. Therefore, PGA is often split into the horizontal and vertical components. Horizontal PGAs are generally larger than those in the vertical direction but this is not always true, especially close to large earthquakes.
Show more
Related MOOCs (3)
Introduction to Astrophysics
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Introduction à l'Astrophysique
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Introduction to Astrophysics
Learn about the physical phenomena at play in astronomical objects and link theoretical predictions to observations.