The patch clamp technique is a laboratory technique in electrophysiology used to study ionic currents in individual isolated living cells, tissue sections, or patches of cell membrane. The technique is especially useful in the study of excitable cells such as neurons, cardiomyocytes, muscle fibers, and pancreatic beta cells, and can also be applied to the study of bacterial ion channels in specially prepared giant spheroplasts. Patch clamping can be performed using the voltage clamp technique. In this case, the voltage across the cell membrane is controlled by the experimenter and the resulting currents are recorded. Alternatively, the current clamp technique can be used. In this case, the current passing across the membrane is controlled by the experimenter and the resulting changes in voltage are recorded, generally in the form of action potentials. Erwin Neher and Bert Sakmann developed the patch clamp in the late 1970s and early 1980s. This discovery made it possible to record the currents of single ion channel molecules for the first time, which improved understanding of the involvement of channels in fundamental cell processes such as action potentials and nerve activity. Neher and Sakmann received the Nobel Prize in Physiology or Medicine in 1991 for this work. During a patch clamp recording, a hollow glass tube known as a micropipette or patch pipette filled with an electrolyte solution and a recording electrode connected to an amplifier is brought into contact with the membrane of an isolated cell. Another electrode is placed in a bath surrounding the cell or tissue as a reference ground electrode. An electrical circuit can be formed between the recording and reference electrode with the cell of interest in between. The solution filling the patch pipette might match the ionic composition of the bath solution, as in the case of cell-attached recording, or match the cytoplasm, for whole-cell recording. The solution in the bath solution may match the physiological extracellular solution, the cytoplasm, or be entirely non-physiological, depending on the experiment to be performed.
Sandro Carrara, Diego Ghezzi, Gian Luca Barbruni
Pascal Fua, Mathieu Salzmann, Krzysztof Maciej Lis, Sina Honari
Carl Petersen, Sylvain Crochet, Aurélie Pala, Taro Kiritani, Célia Roxane Gasselin