Concept

Algebraic surface

Summary
In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of dimension four as a smooth manifold. The theory of algebraic surfaces is much more complicated than that of algebraic curves (including the compact Riemann surfaces, which are genuine surfaces of (real) dimension two). Many results were obtained, however, in the Italian school of algebraic geometry, and are up to 100 years old. Enriques–Kodaira classification In the case of dimension one, varieties are classified by only the topological genus, but, in dimension two, one needs to distinguish the arithmetic genus and the geometric genus because one cannot distinguish birationally only the topological genus. Then, irregularity is introduced for the classification of varieties. A summary of the results (in detail, for each kind of surface refers to each redirection), follows: Examples of algebraic surfaces include (κ is the Kodaira dimension): κ = −∞: the projective plane, quadrics in P3, cubic surfaces, Veronese surface, del Pezzo surfaces, ruled surfaces κ = 0 : K3 surfaces, abelian surfaces, Enriques surfaces, hyperelliptic surfaces κ = 1: elliptic surfaces κ = 2: surfaces of general type. For more examples see the list of algebraic surfaces. The first five examples are in fact birationally equivalent. That is, for example, a cubic surface has a function field isomorphic to that of the projective plane, being the rational functions in two indeterminates. The Cartesian product of two curves also provides examples. The birational geometry of algebraic surfaces is rich, because of blowing up (also known as a monoidal transformation), under which a point is replaced by the curve of all limiting tangent directions coming into it (a projective line). Certain curves may also be blown down, but there is a restriction (self-intersection number must be −1).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (4)
MATH-123(b): Geometry
The course provides an introduction to the study of curves and surfaces in Euclidean spaces. We will learn how we can apply ideas from differential and integral calculus and linear algebra in order to
MSE-304: Surfaces and interfaces
This lecture introduces the basic concepts used to describe the atomic or molecular structure of surfaces and interfaces and the underlying thermodynamic concepts. The influence of interfaces on the p
MATH-126: Geometry for architects II
Ce cours traite des 3 sujets suivants : la perspective, la géométrie descriptive, et une initiation à la géométrie projective.
Show more
Related concepts (22)
Intersection theory
In mathematics, intersection theory is one of the main branches of algebraic geometry, where it gives information about the intersection of two subvarieties of a given variety. The theory for varieties is older, with roots in Bézout's theorem on curves and elimination theory. On the other hand, the topological theory more quickly reached a definitive form. There is yet an ongoing development of intersection theory. Currently the main focus is on: virtual fundamental cycles, quantum intersection rings, Gromov-Witten theory and the extension of intersection theory from schemes to stacks.
Cubic surface
In mathematics, a cubic surface is a surface in 3-dimensional space defined by one polynomial equation of degree 3. Cubic surfaces are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space, and so cubic surfaces are generally considered in projective 3-space . The theory also becomes more uniform by focusing on surfaces over the complex numbers rather than the real numbers; note that a complex surface has real dimension 4.
K3 surface
In mathematics, a complex analytic K3 surface is a compact connected complex manifold of dimension 2 with а trivial canonical bundle and irregularity zero. An (algebraic) K3 surface over any field means a smooth proper geometrically connected algebraic surface that satisfies the same conditions. In the Enriques–Kodaira classification of surfaces, K3 surfaces form one of the four classes of minimal surfaces of Kodaira dimension zero. A simple example is the Fermat quartic surface in complex projective 3-space.
Show more