Intersection theoryIn mathematics, intersection theory is one of the main branches of algebraic geometry, where it gives information about the intersection of two subvarieties of a given variety. The theory for varieties is older, with roots in Bézout's theorem on curves and elimination theory. On the other hand, the topological theory more quickly reached a definitive form. There is yet an ongoing development of intersection theory. Currently the main focus is on: virtual fundamental cycles, quantum intersection rings, Gromov-Witten theory and the extension of intersection theory from schemes to stacks.
Cubic surfaceIn mathematics, a cubic surface is a surface in 3-dimensional space defined by one polynomial equation of degree 3. Cubic surfaces are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space, and so cubic surfaces are generally considered in projective 3-space . The theory also becomes more uniform by focusing on surfaces over the complex numbers rather than the real numbers; note that a complex surface has real dimension 4.
K3 surfaceIn mathematics, a complex analytic K3 surface is a compact connected complex manifold of dimension 2 with а trivial canonical bundle and irregularity zero. An (algebraic) K3 surface over any field means a smooth proper geometrically connected algebraic surface that satisfies the same conditions. In the Enriques–Kodaira classification of surfaces, K3 surfaces form one of the four classes of minimal surfaces of Kodaira dimension zero. A simple example is the Fermat quartic surface in complex projective 3-space.
Kodaira dimensionIn algebraic geometry, the Kodaira dimension κ(X) measures the size of the canonical model of a projective variety X. Igor Shafarevich in a seminar introduced an important numerical invariant of surfaces with the notation κ. Shigeru Iitaka extended it and defined the Kodaira dimension for higher dimensional varieties (under the name of canonical dimension), and later named it after Kunihiko Kodaira. The canonical bundle of a smooth algebraic variety X of dimension n over a field is the line bundle of n-forms, which is the nth exterior power of the cotangent bundle of X.
Ample line bundleIn mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative" (or a mixture of the two). The most important notion of positivity is that of an ample line bundle, although there are several related classes of line bundles. Roughly speaking, positivity properties of a line bundle are related to having many global sections. Understanding the ample line bundles on a given variety X amounts to understanding the different ways of mapping X into projective space.
List of complex and algebraic surfacesThis is a list of named algebraic surfaces, compact complex surfaces, and families thereof, sorted according to their Kodaira dimension following Enriques–Kodaira classification. Projective plane Cone (geometry) Cylinder Ellipsoid Hyperboloid Paraboloid Sphere Spheroid Cayley nodal cubic surface, a certain cubic surface with 4 nodes Cayley's ruled cubic surface Clebsch surface or Klein icosahedral surface Fermat cubic Monkey saddle Parabolic conoid Plücker's conoid Whitney umbrella Châtelet surfaces Dupin
Francesco SeveriFrancesco Severi (13 April 1879 – 8 December 1961) was an Italian mathematician. He was the chair of the committee on Fields Medal on 1936, at the first delivery. Severi was born in Arezzo, Italy. He is famous for his contributions to algebraic geometry and the theory of functions of several complex variables. He became the effective leader of the Italian school of algebraic geometry. Together with Federigo Enriques, he won the Bordin prize from the French Academy of Sciences.
Picard groupIn mathematics, the Picard group of a ringed space X, denoted by Pic(X), is the group of isomorphism classes of invertible sheaves (or line bundles) on X, with the group operation being tensor product. This construction is a global version of the construction of the divisor class group, or ideal class group, and is much used in algebraic geometry and the theory of complex manifolds. Alternatively, the Picard group can be defined as the sheaf cohomology group For integral schemes the Picard group is isomorphic to the class group of Cartier divisors.
Differentiable manifoldIn mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart.
Surface of general typeIn algebraic geometry, a surface of general type is an algebraic surface with Kodaira dimension 2. Because of Chow's theorem any compact complex manifold of dimension 2 and with Kodaira dimension 2 will actually be an algebraic surface, and in some sense most surfaces are in this class. Gieseker showed that there is a coarse moduli scheme for surfaces of general type; this means that for any fixed values of the Chern numbers there is a quasi-projective scheme classifying the surfaces of general type with those Chern numbers.