**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Square (algebra)

Summary

In mathematics, a square is the result of multiplying a number by itself. The verb "to square" is used to denote this operation. Squaring is the same as raising to the power 2, and is denoted by a superscript 2; for instance, the square of 3 may be written as 32, which is the number 9.
In some cases when superscripts are not available, as for instance in programming languages or plain text files, the notations x^2 (caret) or x**2 may be used in place of x2.
The adjective which corresponds to squaring is quadratic.
The square of an integer may also be called a square number or a perfect square. In algebra, the operation of squaring is often generalized to polynomials, other expressions, or values in systems of mathematical values other than the numbers. For instance, the square of the linear polynomial x + 1 is the quadratic polynomial (x + 1)2 = x2 + 2x + 1.
One of the important properties of squaring, for numbers as well as in many other mathematical systems, is that (for all numbers x), the square of x is the same as the square of its additive inverse −x. That is, the square function satisfies the identity x2 = (−x)2. This can also be expressed by saying that the square function is an even function.
The squaring operation defines a real function called the or the . Its domain is the whole real line, and its is the set of nonnegative real numbers.
The square function preserves the order of positive numbers: larger numbers have larger squares. In other words, the square is a monotonic function on the interval . On the negative numbers, numbers with greater absolute value have greater squares, so the square is a monotonically decreasing function on . Hence, zero is the (global) minimum of the square function.
The square x2 of a number x is less than x (that is x2 < x) if and only if 0 < x < 1, that is, if x belongs to the open interval . This implies that the square of an integer is never less than the original number x.
Every positive real number is the square of exactly two numbers, one of which is strictly positive and the other of which is strictly negative.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related MOOCs

Loading

Related publications (2)

Related people

Related units

No results

Related concepts (99)

Related courses (99)

Related MOOCs (17)

No results

Loading

Loading

Related lectures (1,000)

MATH-506: Topology IV.b - cohomology rings

Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a

MATH-351: Advanced numerical analysis

The student will learn state-of-the-art algorithms for solving differential equations. The analysis and implementation of these algorithms will be discussed in some detail.

CH-244: Quantum chemistry

Introduction to Quantum Mechanics with examples related to chemistry

Pythagorean theorem

In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides. The theorem can be written as an equation relating the lengths of the sides a, b and the hypotenuse c, sometimes called the Pythagorean equation: The theorem is named for the Greek philosopher Pythagoras, born around 570 BC.

−1

In mathematics, −1 (negative one or minus one) is the additive inverse of 1, that is, the number that when added to 1 gives the additive identity element, 0. It is the negative integer greater than negative two (−2) and less than 0. Multiplying a number by −1 is equivalent to changing the sign of the number – that is, for any x we have (−1) ⋅ x = −x. This can be proved using the distributive law and the axiom that 1 is the multiplicative identity: x + (−1) ⋅ x = 1 ⋅ x + (−1) ⋅ x = (1 + (−1)) ⋅ x = 0 ⋅ x = 0.

Quadratic function

In mathematics, a quadratic polynomial is a polynomial of degree two in one or more variables. A quadratic function is the polynomial function defined by a quadratic polynomial. Before the 20th century, the distinction was unclear between a polynomial and its associated polynomial function; so "quadratic polynomial" and "quadratic function" were almost synonymous. This is still the case in many elementary courses, where both terms are often abbreviated as "quadratic".

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Effective Field Theory: Universal Description at Low Energies

Explores effective field theory, emphasizing its application to the standard model and the hierarchy problem.

Chemical Bonding

Covers the fundamentals of chemical bonding and the interaction between atoms to form different types of bonds.

Introduction to Quantum Field Theory

Introduces Quantum Field Theory, explaining the Klein-Gordon equation and vector representations.

We contribute to the classification of finite dimensional algebras under stable equivalence of Morita type. More precisely we give a classification of Erdmann's algebras of dihedral, semi-dihedral and

Motivated by the work of Kupershmidt (J. Nonlin. Math. Phys. 6 (1998), 222 -245) we discuss the occurrence of left symmetry in a generalized Virasoro algebra. The multiplication rule is defined, which