A heterojunction is an interface between two layers or regions of dissimilar semiconductors. These semiconducting materials have unequal band gaps as opposed to a homojunction. It is often advantageous to engineer the electronic energy bands in many solid-state device applications, including semiconductor lasers, solar cells and transistors. The combination of multiple heterojunctions together in a device is called a heterostructure, although the two terms are commonly used interchangeably. The requirement that each material be a semiconductor with unequal band gaps is somewhat loose, especially on small length scales, where electronic properties depend on spatial properties. A more modern definition of heterojunction is the interface between any two solid-state materials, including crystalline and amorphous structures of metallic, insulating, fast ion conductor and semiconducting materials.
Heterojunction manufacturing generally requires the use of molecular beam epitaxy (MBE) or chemical vapor deposition (CVD) technologies in order to precisely control the deposition thickness and create a cleanly lattice-matched abrupt interface. A recent alternative under research is the mechanical stacking of layered materials into van der Waals heterostructures.
Despite their expense, heterojunctions have found use in a variety of specialized applications where their unique characteristics are critical:
Solar cells: Heterojunctions are formed through the interface of a crystalline silicon substrate (band gap 1.1 eV) and amorphous silicon thin film (band gap 1.7 eV) in some solar cell architectures. The heterojunction is used to separate charge carriers in a similar way to a p–n junction. The Heterojunction with Intrinsic Thin-Layer (HIT) solar cell structure was first developed in 1983 and commercialised by Sanyo/Panasonic. HIT solar cells now hold the record for the most efficient single-junction silicon solar cell, with a conversion efficiency of 26.7%.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical phenomenon. It is a form of photoelectric cell, defined as a device whose electrical characteristics, such as current, voltage, or resistance, vary when exposed to light. Individual solar cell devices are often the electrical building blocks of photovoltaic modules, known colloquially as solar panels.
A quantum well is a potential well with only discrete energy values. The classic model used to demonstrate a quantum well is to confine particles, which were initially free to move in three dimensions, to two dimensions, by forcing them to occupy a planar region. The effects of quantum confinement take place when the quantum well thickness becomes comparable to the de Broglie wavelength of the carriers (generally electrons and holes), leading to energy levels called "energy subbands", i.e.
A heterojunction is an interface between two layers or regions of dissimilar semiconductors. These semiconducting materials have unequal band gaps as opposed to a homojunction. It is often advantageous to engineer the electronic energy bands in many solid-state device applications, including semiconductor lasers, solar cells and transistors. The combination of multiple heterojunctions together in a device is called a heterostructure, although the two terms are commonly used interchangeably.
Lectures on the fundamental aspects of semiconductor physics and the main properties of the p-n junction that is at the heart of devices like LEDs & laser diodes. The last part deals with light-matter
Introduce students to the magnetic and electronic properties of nanostructures
Series of lectures covering the physics of quantum heterostructures (including quantum dots), microcavities and photonic crystal cavities as well as the properties of the main light emitting devices t
Reviews ultrafast carrier and spin dynamics in 2D semiconductors and their heterostructures, exploring unique optical responses and novel applications.
Experimental control of local spin-charge interconversion is of primary interest for spintronics. Van der Waals (vdW) heterostructures combining graphene with a strongly spin-orbit coupled two-dimensi
NATURE PORTFOLIO2022
The international actions against global warming demands reductions in carbon emission and more efficient use of energy. Energy efficiency in the conversion and use of electricity, as an important for
Since their discovery, graphene and other 2D materials have become a subject of intense research in condensed matter physics. Especially the vast possibilities of combining those materials into hetero