Holography is a technique that enables a wavefront to be recorded and later re-constructed. Holography is best known as a method of generating real , but it also has a wide range of other applications. In principle, it is possible to make a hologram for any type of wave.
A hologram is made by superimposing a second wavefront (normally called the reference beam) on the wavefront of interest, thereby generating an interference pattern which is recorded on a physical medium. When only the second wavefront illuminates the interference pattern, it is diffracted to recreate the original wavefront. Holograms can also be computer-generated by modelling the two wavefronts and adding them together digitally. The resulting digital image is then printed onto a suitable mask or film and illuminated by a suitable source to reconstruct the wavefront of interest.
The Hungarian-British physicist Dennis Gabor (in Hungarian: Gábor Dénes) was awarded the Nobel Prize in Physics in 1971 "for his invention and development of the holographic method".
His work, done in the late 1940s, was built on pioneering work in the field of X-ray microscopy by other scientists including Mieczysław Wolfke in 1920 and William Lawrence Bragg in 1939. This discovery was an unexpected result of research into improving electron microscopes at the British Thomson-Houston Company (BTH) in Rugby, England, and the company filed a patent in December 1947 (patent GB685286). The technique as originally invented is still used in electron microscopy, where it is known as electron holography, but optical holography did not really advance until the development of the laser in 1960. The word holography comes from the Greek words ὅλος (holos; "whole") and γραφή (graphē; "writing" or "drawing").
A hologram is a recording of an interference pattern which can reproduce a 3D light field using diffraction. The reproduced light field can generate an image which still has the depth, parallax, and other properties of the original scene.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course will present the fundamentals of electronâmatter interactions, as occuring in the energy range available in modern transmission electron microscopes, namely 60-300 keV electrons. Diffrac
Introduction to 0ptical imaging systems such as camera objectives and microscopes. Discussion of imaging formation. Principles of design of imaging optics with geometrical optics and analysis with ray
Ce cours d'introduction à la microscopie a pour but de donner un apperçu des différentes techniques d'analyse de la microstructure et de la composition des matériaux, en particulier celles liées aux m
Interferometry is a technique which uses the interference of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber optics, engineering metrology, optical metrology, oceanography, seismology, spectroscopy (and its applications to chemistry), quantum mechanics, nuclear and particle physics, plasma physics, biomolecular interactions, surface profiling, microfluidics, mechanical stress/strain measurement, velocimetry, optometry, and making holograms.
In physics, coherence expresses the potential for two waves to interfere. Two monochromatic beams from a single source always interfere. Physical sources are not strictly monochromatic: they may be partly coherent. Beams from different sources are mutually incoherent. When interfering, two waves add together to create a wave of greater amplitude than either one (constructive interference) or subtract from each other to create a wave of minima which may be zero (destructive interference), depending on their relative phase.
An image is a visual representation of something. An image can be a two-dimensional (2D) representation, such as a drawing, painting, or photograph, or a three-dimensional (3D) object, such as a carving or sculpture. An image may be displayed through other media, including projection on a surface, activation of electronic signals, or digital displays. Two-dimensional images can be still or animated. Still images can usually be reproduced through mechanical means, such as photography, printmaking or photocopying.
We demonstrate a figure-of-9 all-fiber thulium-doped laser (TDFL) that generates 560 fs long pulses at 1948 nm wavelength. In order to achieve self-starting passive mode-locking, we utilize an in-fiber Faraday rotator to induce a nonreciprocal phase shift. ...
Bristol2024
Phase-shifting electron holography is an excellent method to reveal electron wave phase information with very high phase sensitivity over a large range of spatial frequencies. It circumvents the limiting trade-off between fringe spacing and visibility of s ...
Amsterdam2023
By operating with the Scale Relativity Theory in the dynamics of complex systems, we can achieve a description of these complex systems through a holographic-type perspective. Then, gauge invariances of a Riccati-type become functional in complex system dy ...