Summary
A codec is a device or computer program that encodes or decodes a data stream or signal. Codec is a portmanteau of coder/decoder. In electronic communications, an endec is a device that acts as both an encoder and a decoder on a signal or data stream, and hence is a type of codec. Endec is a portmanteau of encoder/decoder. A coder or encoder encodes a data stream or a signal for transmission or storage, possibly in encrypted form, and the decoder function reverses the encoding for playback or editing. Codecs are used in videoconferencing, streaming media, and video editing applications. In the mid-20th century, a codec was a device that coded analog signals into digital form using pulse-code modulation (PCM). Later, the name was also applied to software for converting between digital signal formats, including companding functions. An audio codec converts analog audio signals into digital signals for transmission or encodes them for storage. A receiving device converts the digital signals back to analog form using an audio decoder for playback. An example of this is the codecs used in the sound cards of personal computers. A video codec accomplishes the same task for video signals. An Emergency Alert System unit is usually an endec, but sometimes just a decoder. When implementing the Infrared Data Association (IrDA) protocol, an endec may be used between the UART and the optoelectronics. In addition to encoding a signal, a codec may also compress the data to reduce transmission bandwidth or storage space. Compression codecs are classified primarily into lossy codecs and lossless codecs. Lossless codecs are often used for archiving data in a compressed form while retaining all information present in the original stream. If preserving the original quality of the stream is more important than eliminating the correspondingly larger data sizes, lossless codecs are preferred.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
EE-518: Analog circuits for biochip
Introduction to analog CMOS design for Remote Biosensors on Chip. Understanding and designing of active and remotely powered biosensing systems. Basic understanding of eh wireless transmission of teh
DH-500: Computational Social Media
The course integrates concepts from media studies, machine learning, multimedia, and network science to characterize social practices and analyze content in platforms like Facebook, Twitter, and YouTu
Related publications (97)
Related concepts (27)
Data compression
In information theory, data compression, source coding, or bit-rate reduction is the process of encoding information using fewer bits than the original representation. Any particular compression is either lossy or lossless. Lossless compression reduces bits by identifying and eliminating statistical redundancy. No information is lost in lossless compression. Lossy compression reduces bits by removing unnecessary or less important information.
Lossy compression
In information technology, lossy compression or irreversible compression is the class of data compression methods that uses inexact approximations and partial data discarding to represent the content. These techniques are used to reduce data size for storing, handling, and transmitting content. The different versions of the photo of the cat on this page show how higher degrees of approximation create coarser images as more details are removed. This is opposed to lossless data compression (reversible data compression) which does not degrade the data.
Bit rate
In telecommunications and computing, bit rate (bitrate or as a variable R) is the number of bits that are conveyed or processed per unit of time. The bit rate is expressed in the unit bit per second (symbol: bit/s), often in conjunction with an SI prefix such as kilo (1 kbit/s = 1,000 bit/s), mega (1 Mbit/s = 1,000 kbit/s), giga (1 Gbit/s = 1,000 Mbit/s) or tera (1 Tbit/s = 1,000 Gbit/s). The non-standard abbreviation bps is often used to replace the standard symbol bit/s, so that, for example, 1 Mbps is used to mean one million bits per second.
Show more