Summary
In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. Energy can neither be created nor destroyed; rather, it can only be transformed or transferred from one form to another. For instance, chemical energy is converted to kinetic energy when a stick of dynamite explodes. If one adds up all forms of energy that were released in the explosion, such as the kinetic energy and potential energy of the pieces, as well as heat and sound, one will get the exact decrease of chemical energy in the combustion of the dynamite. Classically, conservation of energy was distinct from conservation of mass. However, special relativity shows that mass is related to energy and vice versa by , the equation representing mass–energy equivalence, and science now takes the view that mass-energy as a whole is conserved. Theoretically, this implies that any object with mass can itself be converted to pure energy, and vice versa. However, this is believed to be possible only under the most extreme of physical conditions, such as likely existed in the universe very shortly after the Big Bang or when black holes emit Hawking radiation. Given the stationary-action principle, conservation of energy can be rigorously proven by Noether's theorem as a consequence of continuous time translation symmetry; that is, from the fact that the laws of physics do not change over time. A consequence of the law of conservation of energy is that a perpetual motion machine of the first kind cannot exist; that is to say, no system without an external energy supply can deliver an unlimited amount of energy to its surroundings. Depending on the definition of energy, conservation of energy can arguably be violated by general relativity on the cosmological scale. Ancient philosophers as far back as Thales of Miletus 550 BCE had inklings of the conservation of some underlying substance of which everything is made.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
ChE-204: Introduction to transport phenomena
This course aims at understanding the basic equations behind macroscopic and microscopic transport phenomena (mass, heat and momentum).
PHYS-636: General aspects of the electronic structure of crystals
The course is aimed at giving a general understanding and building a feeling of what electronic states inside a crystal are.
PHYS-101(en): General physics : mechanics (English)
Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c
Show more
Related lectures (246)
Introduction to Plasma Physics
Introduces the basics of plasma physics, covering collective behavior, Debye length, and plasma conditions.
Wave Equations: Vibrating String
Explores the wave equation for a vibrating string and its numerical solution using finite difference formulas and the Newmark scheme in MATLAB/GNU Octave.
Conservation of Energy: Calculating Speed and Work
Covers the calculation of speed and work using the conservation of energy principle.
Show more
Related publications (270)

High-order geometric integrators for the variational Gaussian wavepacket dynamics and application to vibronic spectra at finite temperature

Roya Moghaddasi Fereidani

Molecular quantum dynamics simulations are essential for understanding many fundamental phenomena in physics and chemistry. They often require solving the time-dependent Schrödinger equation for molecular nuclei, which is challenging even for medium-sized ...
EPFL2024

Actors and Objects of Heritage Preservation. The Singular and Dual Condition of Historical Architectural Archives

Salvatore Aprea, Barbara Galimberti

In a society that recognizes the urgency of safeguarding the environment and drastically limiting land transformations and energy-intensive activities like constructing new buildings, the protection of architectural and environmental heritage is no longer ...
2024

A generalization of the Hawking black hole area theorem

Veronica Sacchi

Hawking's black hole area theorem was proven using the null energy condition (NEC), a pointwise condition violated by quantum fields. The violation of the NEC is usually cited as the reason that black hole evaporation is allowed in the context of semiclass ...
Springer/Plenum Publishers2024
Show more
Related concepts (38)
Classical mechanics
Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical mechanics, if the present state is known, it is possible to predict how it will move in the future (determinism), and how it has moved in the past (reversibility). The "classical" in "classical mechanics" does not refer classical antiquity, as it might in, say, classical architecture.
Perpetual motion
Perpetual motion is the motion of bodies that continues forever in an unperturbed system. A perpetual motion machine is a hypothetical machine that can do work infinitely without an external energy source. This kind of machine is impossible, as it would violate either the first or second law of thermodynamics, or both. These laws of thermodynamics apply regardless of the size of the system.
Mass–energy equivalence
In physics, mass–energy equivalence is the relationship between mass and energy in a system's rest frame, where the two quantities differ only by a multiplicative constant and the units of measurement. The principle is described by the physicist Albert Einstein's formula: . In a reference frame where the system is moving, its relativistic energy and relativistic mass (instead of rest mass) obey the same formula. The formula defines the energy E of a particle in its rest frame as the product of mass (m) with the speed of light squared (c2).
Show more
Related MOOCs (6)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Show more