Relation (mathematics)In mathematics, a binary relation on a set may, or may not, hold between two given set members. For example, "is less than" is a relation on the set of natural numbers; it holds e.g. between 1 and 3 (denoted as 1
Union (set theory)In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. It is one of the fundamental operations through which sets can be combined and related to each other. A refers to a union of zero () sets and it is by definition equal to the empty set. For explanation of the symbols used in this article, refer to the table of mathematical symbols. The union of two sets A and B is the set of elements which are in A, in B, or in both A and B.
Mathematical objectA mathematical object is an abstract concept arising in mathematics. In the usual language of mathematics, an object is anything that has been (or could be) formally defined, and with which one may do deductive reasoning and mathematical proofs. Typically, a mathematical object can be a value that can be assigned to a variable, and therefore can be involved in formulas. Commonly encountered mathematical objects include numbers, sets, functions, expressions, geometric objects, transformations of other mathematical objects, and spaces.
GeometryGeometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.
Equality (mathematics)In mathematics, equality is a relationship between two quantities or, more generally two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object. The equality between A and B is written A = B, and pronounced "A equals B". The symbol "=" is called an "equals sign". Two objects that are not equal are said to be distinct. For example: means that x and y denote the same object. The identity means that if x is any number, then the two expressions have the same value.
SubsetIn mathematics, set A is a subset of a set B if all elements of A are also elements of B; B is then a superset of A. It is possible for A and B to be equal; if they are unequal, then A is a proper subset of B. The relationship of one set being a subset of another is called inclusion (or sometimes containment). A is a subset of B may also be expressed as B includes (or contains) A or A is included (or contained) in B. A k-subset is a subset with k elements. The subset relation defines a partial order on sets.
Complement (set theory)In set theory, the complement of a set A, often denoted by A∁ (or A′), is the set of elements not in A. When all sets in the universe, i.e. all sets under consideration, are considered to be members of a given set U, the absolute complement of A is the set of elements in U that are not in A. The relative complement of A with respect to a set B, also termed the set difference of B and A, written is the set of elements in B that are not in A.
Antisymmetric relationIn mathematics, a binary relation on a set is antisymmetric if there is no pair of distinct elements of each of which is related by to the other. More formally, is antisymmetric precisely if for all or equivalently, The definition of antisymmetry says nothing about whether actually holds or not for any . An antisymmetric relation on a set may be reflexive (that is, for all ), irreflexive (that is, for no ), or neither reflexive nor irreflexive. A relation is asymmetric if and only if it is both antisymmetric and irreflexive.
Singleton (mathematics)In mathematics, a singleton, also known as a unit set or one-point set, is a set with exactly one element. For example, the set is a singleton whose single element is . Within the framework of Zermelo–Fraenkel set theory, the axiom of regularity guarantees that no set is an element of itself. This implies that a singleton is necessarily distinct from the element it contains, thus 1 and {1} are not the same thing, and the empty set is distinct from the set containing only the empty set.
Variable (mathematics)In mathematics, a variable (from Latin variabilis, "changeable") is a symbol that represents a mathematical object. A variable may represent a number, a vector, a matrix, a function, the argument of a function, a set, or an element of a set. Algebraic computations with variables as if they were explicit numbers solve a range of problems in a single computation. For example, the quadratic formula solves any quadratic equation by substituting the numeric values of the coefficients of that equation for the variables that represent them in the quadratic formula.