Relation (mathematics)In mathematics, a binary relation on a set may, or may not, hold between two given set members. For example, "is less than" is a relation on the set of natural numbers; it holds e.g. between 1 and 3 (denoted as 1
Union (mathématiques)Dans la théorie des ensembles, l'union ou réunion est une opération ensembliste de base. En algèbre booléenne, l'union est associée à l'opérateur logique ou inclusif et est notée ∪. L'union de deux ensembles A et B est l'ensemble qui contient tous les éléments qui appartiennent à A ou appartiennent à B. On la note A ∪ B et on la dit « A union B » Formellement : Par exemple l'union des ensembles A = {1, 2, 3} et B = {2, 3, 4} est l'ensemble {1, 2, 3, 4}.
Mathematical objectA mathematical object is an abstract concept arising in mathematics. In the usual language of mathematics, an object is anything that has been (or could be) formally defined, and with which one may do deductive reasoning and mathematical proofs. Typically, a mathematical object can be a value that can be assigned to a variable, and therefore can be involved in formulas. Commonly encountered mathematical objects include numbers, sets, functions, expressions, geometric objects, transformations of other mathematical objects, and spaces.
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Égalité (mathématiques)vignette|"Signe égal" exprimant l'égalité entre deux expressions. En mathématiques, l’égalité est une relation binaire entre deux objets signifiant que ces objets sont identiques, c’est-à-dire que le remplacement de l’un par l’autre dans une expression ne change jamais la valeur de cette dernière. Une égalité est une proposition pouvant s’écrire à l’aide du signe égal « = », séparant deux expressions mathématiques de même nature (nombres, vecteurs, fonctions, ensembles...) ; la négation de cette proposition s’écrit à l’aide du symbole « ≠ ».
Inclusion (mathématiques)En mathématiques, l’inclusion est une relation d'ordre entre ensembles. On dit qu'un ensemble A est inclus dans un ensemble B si tous les éléments de A sont aussi éléments de B. On dit dans ce cas que A est un sous-ensemble ou une partie de B, ou encore que B est sur-ensemble de A. Cette relation n'est pas symétrique a priori, car il peut y avoir des éléments du deuxième ensemble qui n'appartiennent pas au premier. Plus précisément, il y a inclusion dans les deux sens entre deux ensembles si et seulement si ces deux ensembles sont égaux.
Complémentaire (théorie des ensembles)En mathématiques, et plus particulièrement en théorie des ensembles, le complémentaire d'une partie d'un ensemble est constitué de tous les éléments de n'appartenant pas à . Le complémentaire de est . En cas de risque de confusion, si l'on veut préciser que l'on parle du complémentaire de dans , on note . Si est différent de l'ensemble vide et de , alors et forment une partition de l'ensemble . Lorsque est un ensemble fini, la somme des cardinaux de et est égale au cardinal de : D'où on déduit : Exemple Pour dénombrer les absents dans une assemblée prévue de cinquante personnes, il suffit de compter les présents.
Relation antisymétriqueEn mathématiques, une relation (binaire, interne) R sur un ensemble E est dite antisymétrique si elle vérifie : ce qui signifie que l'intersection de son graphe avec celui de sa relation réciproque est incluse dans la diagonale de E, autrement dit : La condition (1) peut aussi s'écrire On remarque l'antisymétrie d'une relation sur son diagramme sagittal par le fait qu'il n'y a pas de double flèche (donc que des sens uniques).
Singleton (mathématiques)En mathématiques, un singleton est un ensemble qui comprend exactement un élément. Le singleton dont l'élément est a se note . Soit S une classe définie par une fonction indicatrice alors S est un singleton si et seulement s’il existe y ∈ X tel que pour tout x ∈ X, La définition suivante vient de Alfred North Whitehead et Russell Le symbole ι'x désigne le singleton {x} et désigne la classe des objets identiques à x, soit l'ensemble {y / y = x}.
Variable (mathématiques)Dans les mathématiques supérieures et en logique, une variable est un symbole représentant, a priori, un objet indéterminé. On peut cependant ajouter des conditions sur cet objet, tel que l'ensemble ou la collection le contenant. On peut alors utiliser une variable pour marquer un rôle dans un prédicat, une formule ou un algorithme, ou bien résoudre des équations et d'autres problèmes. Il peut s'agir d'une simple valeur, ou d'un objet mathématique tel qu'un vecteur, une matrice ou même une fonction.