Concept

Correlation function (quantum field theory)

In quantum field theory, correlation functions, often referred to as correlators or Green's functions, are vacuum expectation values of time-ordered products of field operators. They are a key object of study in quantum field theory where they can be used to calculate various observables such as S-matrix elements. They are closely related to correlation functions between random variables, although they are nonetheless different objects, being defined in Minkowski spacetime and on quantum operators. For a scalar field theory with a single field and a vacuum state at every event (x) in spacetime, the n-point correlation function is the vacuum expectation value of the time-ordered products of field operators in the Heisenberg picture Here is the time-ordering operator for which orders the field operators so that earlier time field operators appear to the right of later time field operators. By transforming the fields and states into the interaction picture, this is rewritten as where is the ground state of the free theory and is the action. Expanding using its Taylor series, the n-point correlation function becomes a sum of interaction picture correlation functions which can be evaluated using Wick's theorem. A diagrammatic way to represent the resulting sum is via Feynman diagrams, where each term can be evaluated using the position space Feynman rules. The series of diagrams arising from is the set of all vacuum bubble diagrams, which are diagrams with no external legs. Meanwhile, is given by the set of all possible diagrams with exactly external legs. Since this also includes disconnected diagrams with vacuum bubbles, the sum factorizes into (sum over all bubble diagrams)(sum of all diagrams with no bubbles). The first term then cancels with the normalization factor in the denominator meaning that the n-point correlation function is the sum of all Feynman diagrams excluding vacuum bubbles While not including any vacuum bubbles, the sum does include disconnected diagrams, which are diagrams where at least one external leg is not connected to all other external legs through some connected path.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (5)
Source field
In theoretical physics, a source field is a background field coupled to the original field as This term appears in the action in Feynman's path integral formulation and responsible for the theory interactions. In Schwinger's formulation the source is responsible for creating or destroying (detecting) particles. In a collision reaction a source could the other particles in the collision. Therefore, the source appears in the vacuum amplitude acting from both sides on Green function correlator of the theory.
Wick's theorem
Wick's theorem is a method of reducing high-order derivatives to a combinatorics problem. It is named after Italian physicist Gian-Carlo Wick. It is used extensively in quantum field theory to reduce arbitrary products of creation and annihilation operators to sums of products of pairs of these operators. This allows for the use of Green's function methods, and consequently the use of Feynman diagrams in the field under study. A more general idea in probability theory is Isserlis' theorem.
Path integral formulation
The path integral formulation is a description in quantum mechanics that generalizes the action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude. This formulation has proven crucial to the subsequent development of theoretical physics, because manifest Lorentz covariance (time and space components of quantities enter equations in the same way) is easier to achieve than in the operator formalism of canonical quantization.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.