In numerical analysis, fixed-point iteration is a method of computing fixed points of a function.
More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is
which gives rise to the sequence of iterated function applications which is hoped to converge to a point . If is continuous, then one can prove that the obtained is a fixed point of , i.e.,
More generally, the function can be defined on any metric space with values in that same space.
A first simple and useful example is the Babylonian method for computing the square root of a > 0, which consists in taking , i.e. the mean value of x and a/x, to approach the limit (from whatever starting point ). This is a special case of Newton's method quoted below.
The fixed-point iteration converges to the unique fixed point of the function for any starting point This example does satisfy (at the latest after the first iteration step) the assumptions of the Banach fixed-point theorem. Hence, the error after n steps satisfies (where we can take , if we start from .) When the error is less than a multiple of for some constant q, we say that we have linear convergence. The Banach fixed-point theorem allows one to obtain fixed-point iterations with linear convergence.
The requirement that f is continuous is important, as the following example shows. The iteration converges to 0 for all values of . However, 0 is not a fixed point of the function as this function is not continuous at , and in fact has no fixed points.
An attracting fixed point of a function f is a fixed point xfix of f such that for any value of x in the domain that is close enough to xfix, the fixed-point iteration sequence
converges to xfix.
The natural cosine function ("natural" means in radians, not degrees or other units) has exactly one fixed point, and that fixed point is attracting. In this case, "close enough" is not a stringent criterion at all—to demonstrate this, start with any real number and repeatedly press the cos key on a calculator (checking first that the calculator is in "radians" mode).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course covers the statistical physics approach to computer science problems ranging from graph theory and constraint satisfaction to inference and machine learning. In particular the replica and
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
In mathematics, series acceleration is one of a collection of sequence transformations for improving the rate of convergence of a series. Techniques for series acceleration are often applied in numerical analysis, where they are used to improve the speed of numerical integration. Series acceleration techniques may also be used, for example, to obtain a variety of identities on special functions. Thus, the Euler transform applied to the hypergeometric series gives some of the classic, well-known hypergeometric series identities.
In mathematics, a fixed-point theorem is a result saying that a function F will have at least one fixed point (a point x for which F(x) = x), under some conditions on F that can be stated in general terms. The Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point.
In numerical analysis, Steffensen's method is an iterative method for root-finding named after Johan Frederik Steffensen which is similar to Newton's method, but with certain situational advantages. In particular, Steffensen's method achieves similar quadratic convergence, but without using derivatives as Newton's method does.
We use numerical bootstrap techniques to study correlation functions of traceless sym-metric tensors of O(N) with two indices ti j. We obtain upper bounds on operator dimen-sions for all the relevant representations and several values of N. We discover sev ...
E. E. Floyd showed in 1973 that there exist only two nontrivial cobor-dism classes that contain manifolds with three cells, and that they lie in dimen-sions 10 and 5. We prove that there is an action of the cyclic group C2 on the 10-dimensional Floyd manif ...
This paper presents a geometry-driven approach to form-finding with reused stock elements. Our proposed workflow uses a K-mean algorithm to cluster stock elements and incorporate their geometrical values early in the form-finding process. A feedback loop i ...