The Kaplan turbine is a propeller-type water turbine which has adjustable blades. It was developed in 1913 by Austrian professor Viktor Kaplan, who combined automatically adjusted propeller blades with automatically adjusted wicket gates to achieve efficiency over a wide range of flow and water level.
The Kaplan turbine was an evolution of the Francis turbine. Its invention allowed efficient power production in low-head applications which was not possible with Francis turbines. The head ranges from and the output ranges from 5 to 200 MW. Runner diameters are between . Turbines rotate at a constant rate, which varies from facility to facility. That rate ranges from as low as 54.5 rpm (Albeni Falls Dam) to 450 rpm.
Kaplan turbines are now widely used throughout the world in high-flow, low-head power production.
Viktor Kaplan, living in Brünn, Austria-Hungary (now Brno, Czechia), obtained his first patent for an adjustable blade propeller turbine in 1912. But the development of a commercially successful machine would take another decade. Kaplan struggled with cavitation problems, and in 1922 abandoned his research for health reasons.
In 1919 Kaplan installed a demonstration unit at Poděbrady (now in Czechia). In 1922 Voith introduced an 1100 HP (about 800 kW) Kaplan turbine for use mainly on rivers. In 1924 an 8 MW unit went on line at Lilla Edet, Sweden. This launched the commercial success and widespread acceptance of Kaplan turbines.
The Kaplan turbine is an inward flow reaction turbine, which means that the working fluid changes pressure as it moves through the turbine and gives up its energy. Power is recovered from both the hydrostatic head and from the kinetic energy of the flowing water. The design combines features of radial and axial turbines.
The inlet is a scroll-shaped tube that wraps around the turbine's wicket gate. Water is directed tangentially through the wicket gate and spirals on to a propeller shaped runner, causing it to spin.
The outlet is a specially shaped draft tube that helps decelerate the water and recover kinetic energy.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores hydraulic machines under transient conditions and hydroacoustic applications for hydroelectric installations, covering equilibrium chimneys, diaphragm cavitation, and turbine stability.
Introduction aux phénomènes propagatifs dans les circuits hydrauliques, calculs de coups de béliers, comportement transitoire d'aménagements hydroélectriques, simulation numériques 1D du comportement
Master Lecture on the general layout of a hydropower plant. Detailing the specification of Pelton, Francis, Kaplan and Bulb turbines, Storage pumps and Reversible pump-turbines.
Master lecture on Hydraulic Turbomachines: impulse and reaction turbines,pumps and pump-turbines.
A water turbine is a rotary machine that converts kinetic energy and potential energy of water into mechanical work. Water turbines were developed in the 19th century and were widely used for industrial power prior to electrical grids. Now, they are mostly used for electric power generation. Water turbines are mostly found in dams to generate electric power from water potential energy. Water wheels have been used for hundreds of years for industrial power. Their main shortcoming is size, which limits the flow rate and head that can be harnessed.
A turbine ('tɜːrbaɪn or 'tɜːrbɪn) (from the Greek τύρβη, tyrbē, or Latin turbo, meaning vortex) is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work. The work produced can be used for generating electrical power when combined with a generator. A turbine is a turbomachine with at least one moving part called a rotor assembly, which is a shaft or drum with blades attached. Moving fluid acts on the blades so that they move and impart rotational energy to the rotor.
According to the International Energy Agency, the global net-zero emissions objective requires the installed wind power capacity to increase 11-fold between 2020 and 2050. The scientific community has recently voiced concerns about the logistic feasibility ...
This PhD thesis is framed within the XFLEX HYDRO project, funded by the European Union's Horizon 2020 research and innovation program under grant agreement No 857832. The ultimate objective of the XFLEX HYDRO project is to increase hydropower potential in ...
The number of transient operations in hydraulic machinery connected to power grid, notably start-ups and shut-downs, has observed a substantial increase in recent decades, primarily driven by the global shift toward intermittent renewable energy sources. S ...