Search engine indexing is the collecting, parsing, and storing of data to facilitate fast and accurate information retrieval. Index design incorporates interdisciplinary concepts from linguistics, cognitive psychology, mathematics, informatics, and computer science. An alternate name for the process, in the context of search engines designed to find web pages on the Internet, is web indexing. Popular search engines focus on the full-text indexing of online, natural language documents. Media types such as pictures, video, audio, and graphics are also searchable. Meta search engines reuse the indices of other services and do not store a local index whereas cache-based search engines permanently store the index along with the corpus. Unlike full-text indices, partial-text services restrict the depth indexed to reduce index size. Larger services typically perform indexing at a predetermined time interval due to the required time and processing costs, while agent-based search engines index in real time. The purpose of storing an index is to optimize speed and performance in finding relevant documents for a search query. Without an index, the search engine would scan every document in the corpus, which would require considerable time and computing power. For example, while an index of 10,000 documents can be queried within milliseconds, a sequential scan of every word in 10,000 large documents could take hours. The additional computer storage required to store the index, as well as the considerable increase in the time required for an update to take place, are traded off for the time saved during information retrieval. Major factors in designing a search engine's architecture include: Merge factors How data enters the index, or how words or subject features are added to the index during text corpus traversal, and whether multiple indexers can work asynchronously. The indexer must first check whether it is updating old content or adding new content. Traversal typically correlates to the data collection policy.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (9)
CS-423: Distributed information systems
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
PHYS-744: Advanced Topics in Quantum Sciences and Technologies
This course provides an in-depth treatment of the latest experimental and theoretical topics in quantum sciences and technologies, including for example quantum sensing, quantum optics, cold atoms, th
MICRO-435: Quantum and nanocomputing
The course teaches non von-Neumann architectures. The first part of the course deals with quantum computing, sensing, and communications. The second focuses on field-coupled and conduction-based nanoc
Show more
Related publications (99)

Design Patterns for Resource-Constrained Automated Deep-Learning Methods

Prakhar Gupta

We present an extensive evaluation of a wide variety of promising design patterns for automated deep-learning (AutoDL) methods, organized according to the problem categories of the 2019 AutoDL challenges, which set the task of optimizing both model accura ...
2020
Show more
Related concepts (18)
Full-text search
In text retrieval, full-text search refers to techniques for searching a single computer-stored document or a collection in a full-text database. Full-text search is distinguished from searches based on metadata or on parts of the original texts represented in databases (such as titles, abstracts, selected sections, or bibliographical references). In a full-text search, a search engine examines all of the words in every stored document as it tries to match search criteria (for example, text specified by a user).
Web indexing
Web indexing, or internet indexing, comprises methods for indexing the contents of a website or of the Internet as a whole. Individual websites or intranets may use a back-of-the-book index, while search engines usually use keywords and metadata to provide a more useful vocabulary for Internet or onsite searching. With the increase in the number of periodicals that have articles online, web indexing is also becoming important for periodical websites. Back-of-the-book-style web indexes may be called "web site A-Z indexes".
Swiftype
Swiftype is a search and index company based in San Francisco, California, that provides search software for organizations, websites, and computer programs. Notable customers include AT&T, Dr. Pepper, Hubspot and TechCrunch. Swiftype was founded in 2012 by Matt Riley and Quin Hoxie. The company participated in Y Combinator’s incubator program and received investment from a number of prominent sources. Their site search uses semantic understanding of queries to differentiate the meaning of words based on their use.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.