**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Periodic function

Summary

A periodic function or cyclic function is a function that repeats its values at regular intervals. For example, the trigonometric functions, which repeat at intervals of radians, are periodic functions. Periodic functions are used throughout science to describe oscillations, waves, and other phenomena that exhibit periodicity. Any function that is not periodic is called aperiodic.
A function f is said to be periodic if, for some nonzero constant P, it is the case that
for all values of x in the domain. A nonzero constant P for which this is the case is called a period of the function. If there exists a least positive constant P with this property, it is called the fundamental period (also primitive period, basic period, or prime period.) Often, "the" period of a function is used to mean its fundamental period. A function with period P will repeat on intervals of length P, and these intervals are sometimes also referred to as periods of the function.
Geometrically, a periodic function can be defined as a function whose graph exhibits translational symmetry, i.e. a function f is periodic with period P if the graph of f is invariant under translation in the x-direction by a distance of P. This definition of periodicity can be extended to other geometric shapes and patterns, as well as be generalized to higher dimensions, such as periodic tessellations of the plane. A sequence can also be viewed as a function defined on the natural numbers, and for a periodic sequence these notions are defined accordingly.
The sine function is periodic with period , since
for all values of . This function repeats on intervals of length (see the graph to the right).
Everyday examples are seen when the variable is time; for instance the hands of a clock or the phases of the moon show periodic behaviour. Periodic motion is motion in which the position(s) of the system are expressible as periodic functions, all with the same period.
For a function on the real numbers or on the integers, that means that the entire graph can be formed from copies of one particular portion, repeated at regular intervals.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related MOOCs

Loading

Related units

Related concepts (69)

Related courses (19)

Related MOOCs (9)

Related publications (4)

Related people (4)

Related lectures (252)

No results

Sine wave

A sine wave, sinusoidal wave, or sinusoid is a mathematical curve defined in terms of the sine trigonometric function, of which it is the graph. It is a type of continuous wave and also a smooth periodic function. It occurs often in mathematics, as well as in physics, engineering, signal processing and many other fields. Its most basic form as a function of time (t) is: where: A, amplitude, the peak deviation of the function from zero. f, ordinary frequency, the number of oscillations (cycles) that occur each second of time.

Sine and cosine

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .

Sawtooth wave

The sawtooth wave (or saw wave) is a kind of non-sinusoidal waveform. It is so named based on its resemblance to the teeth of a plain-toothed saw with a zero rake angle. A single sawtooth, or an intermittently triggered sawtooth, is called a ramp waveform. The convention is that a sawtooth wave ramps upward and then sharply drops. In a reverse (or inverse) sawtooth wave, the wave ramps downward and then sharply rises. It can also be considered the extreme case of an asymmetric triangle wave.

A theoretical and computational framework for signal sampling and approximation is presented from an intuitive geometric point of view. This lecture covers both mathematical and practical aspects of

Linear and nonlinear dynamical systems are found in all fields of science and engineering. After a short review of linear system theory, the class will explain and develop the main tools for the quali

Le cours étudie les concepts fondamentaux de l'analyse vectorielle et l'analyse de Fourier en vue de leur utilisation pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.

Loading

Loading

Loading

Analyse I

Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond

Analyse I (partie 1) : Prélude, notions de base, les nombres réels

Concepts de base de l'analyse réelle et introduction aux nombres réels.

Analyse I (partie 2) : Introduction aux nombres complexes

Introduction aux nombres complexes

Fourier Series: Sinusoidal Functions and Coefficients

Explains the Fourier series representation of periodic functions using sinusoidal functions and coefficients.

Function Generator: Oscillators

Explores autonomous circuits for generating periodic signals using signal generators, astable flip-flops, and oscillators.

Sampling Theorem and Control Systems

Explores the Sampling Theorem, digital control, signal reconstruction, and anti-aliasing filters.

Jürg Alexander Schiffmann, Eliott Philippe Guenat, Elia Iseli

A finite groove approach (FGA), based on the finite element method (FEM), is used for analyzing the static and dynamic behavior of spiral-grooved aerodynamic journal bearings at different eccentriciti

2020We establish local exact control and local exponential stability of periodic solutions of fifth order Korteweg-de Vries type equations in H-s(& x1d54b;), s > 2. A dissipative term is incorporated into

2019In the past decade, the engineering community has conceived, manufactured and tested micro-swimmers, i.e. microscopic devices which can be steered in their intended environment. Foreseen applications