Summary
A blot, in molecular biology and genetics, is a method of transferring proteins, DNA or RNA onto a carrier (for example, a nitrocellulose, polyvinylidene fluoride or nylon membrane). In many instances, this is done after a gel electrophoresis, transferring the molecules from the gel onto the blotting membrane, and other times adding the samples directly onto the membrane. After the blotting, the transferred proteins, DNA or RNA are then visualized by colorant staining (for example, silver staining of proteins), autoradiographic visualization of radiolabelled molecules (performed before the blot), or specific labelling of some proteins or nucleic acids. The latter is done with antibodies or hybridization probes that bind only to some molecules of the blot and have an enzyme joined to them. After proper washing, this enzymatic activity (and so, the molecules we search in the blot) is visualized by incubation with proper reactive, rendering either a colored deposit on the blot or a chemiluminescent reaction which is registered by photographic film. A Southern blot is a method routinely used in molecular biology for detection of a specific DNA sequence in DNA samples. Southern blotting combines transfer of electrophoresis-separated DNA fragments to a filter membrane and subsequent fragment detection by probe hybridization. A western blot is used for the detection of specific proteins in complex samples. Proteins are first separated by size using electrophoresis before being transferred to an appropriate blotting matrix (usually polyvinylidene fluoride or nitrocellulose) and subsequent detection with antibodies. Similar to a western blot, the far-western blot uses protein–protein interactions to detect the presence of a specific protein immobilized on a blotting matrix. Antibodies are then used to detect the presence of the protein–protein complex, making the Far-Western blot a specific case of the Western blot. A southwestern blot is based on Southern blot and is used to identify and characterize DNA-binding proteins by their ability to bind to specific oligonucleotide probes.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.