In number theory, a Carmichael number is a composite number , which in modular arithmetic satisfies the congruence relation:
for all integers . The relation may also be expressed in the form:
for all integers which are relatively prime to . Carmichael numbers are named after American mathematician Robert Carmichael, the term having been introduced by Nicolaas Beeger in 1950 (Øystein Ore had referred to them in 1948 as numbers with the "Fermat property", or "F numbers" for short).
They are infinite in number.
They constitute the comparatively rare instances where the strict converse of Fermat's Little Theorem does not hold. This fact precludes the use of that theorem as an absolute test of primality.
The Carmichael numbers form the subset K1 of the Knödel numbers.
Fermat's little theorem states that if is a prime number, then for any integer , the number is an integer multiple of . Carmichael numbers are composite numbers which have the same property. Carmichael numbers are also called Fermat pseudoprimes or absolute Fermat pseudoprimes. A Carmichael number will pass a Fermat primality test to every base relatively prime to the number, even though it is not actually prime.
This makes tests based on Fermat's Little Theorem less effective than strong probable prime tests such as the Baillie–PSW primality test and the Miller–Rabin primality test.
However, no Carmichael number is either an Euler–Jacobi pseudoprime or a strong pseudoprime to every base relatively prime to it
so, in theory, either an Euler or a strong probable prime test could prove that a Carmichael number is, in fact, composite.
Arnault
gives a 397-digit Carmichael number that is a strong pseudoprime to all prime bases less than 307:
where
29674495668685510550154174642905332730771991799853043350995075531276838753171770199594238596428121188033664754218345562493168782883
is a 131-digit prime. is the smallest prime factor of , so this Carmichael number is also a (not necessarily strong) pseudoprime to all bases less than .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
Since the discovery of the utility of the numbers, the human being tried to differentiate them. We decide between them according to whether they are even or odd. Or, according to the fact that they are prime or composite. A natural number n >1 is called a ...
2006
We study properties of arithmetic sets coming from multiplicative number theory and obtain applications in the theory of uniform distribution and ergodic theory. Our main theorem is a generalization of Kátai's orthogonality cri ...
We consider fundamental algorithmic number theoretic problems and their relation to a class of block structured Integer Linear Programs (ILPs) called 2-stage stochastic. A 2-stage stochastic ILP is an integer program of the form min{c(T)x vertical bar Ax = ...
A primality test is an algorithm for determining whether an input number is prime. Among other fields of mathematics, it is used for cryptography. Unlike integer factorization, primality tests do not generally give prime factors, only stating whether the input number is prime or not. Factorization is thought to be a computationally difficult problem, whereas primality testing is comparatively easy (its running time is polynomial in the size of the input).
Fermat's little theorem states that if p is a prime number, then for any integer a, the number is an integer multiple of p. In the notation of modular arithmetic, this is expressed as For example, if a = 2 and p = 7, then 27 = 128, and 128 − 2 = 126 = 7 × 18 is an integer multiple of 7. If a is not divisible by p, that is if a is coprime to p, Fermat's little theorem is equivalent to the statement that ap − 1 − 1 is an integer multiple of p, or in symbols: For example, if a = 2 and p = 7, then 26 = 64, and 64 − 1 = 63 = 7 × 9 is thus a multiple of 7.
In modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n. Hence another name is the group of primitive residue classes modulo n. In the theory of rings, a branch of abstract algebra, it is described as the group of units of the ring of integers modulo n.