In mechanics, a couple is a system of forces with a resultant (a.k.a. net or sum) moment of force but no resultant force. A better term is force couple or pure moment. Its effect is to impart angular momentum but no linear momentum. In rigid body dynamics, force couples are free vectors, meaning their effects on a body are independent of the point of application. The resultant moment of a couple is a special case of moment. A couple has the property that it is independent of reference point. Definition A couple is a pair of forces, equal in magnitude, oppositely directed, and displaced by perpendicular distance or moment. The simplest kind of couple consists of two equal and opposite forces whose lines of action do not coincide. This is called a "simple couple". The forces have a turning effect or moment called a torque about an axis which is normal (perpendicular) to the plane of the forces. The SI unit for the torque of the couple is newton metre. If the two forces are F and −F, then the magnitude of the torque is given by the following formula: where is the moment of couple F is the magnitude of the force d is the perpendicular distance (moment) between the two parallel forces The magnitude of the torque is equal to F • d, with the direction of the torque given by the unit vector , which is perpendicular to the plane containing the two forces and positive being a counter-clockwise couple. When d is taken as a vector between the points of action of the forces, then the torque is the cross product of d and F, i.e. The moment of a force is only defined with respect to a certain point P (it is said to be the "moment about P") and, in general, when P is changed, the moment changes. However, the moment (torque) of a couple is independent of the reference point P: Any point will give the same moment. In other words, a couple, unlike any more general moments, is a "free vector". (This fact is called Varignon's Second Moment Theorem.) The proof of this claim is as follows: Suppose there are a set of force vectors F_1, F_2, etc.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (11)
ME-104: Introduction to structural mechanics
The student will acquire the basis for the analysis of static structures and deformation of simple structural elements. The focus is given to problem-solving skills in the context of engineering desig
MICRO-313: Actuators and Electromagnetic systems I
Le cours aborde les principales méthodes pour l'analyse de systèmes électromécaniques. Une étude des grandeurs physiques magnétiques est suivie par la conversion de l'énergie électrique en énergie méc
ME-411: Mechanics of slender structures
Analysis of the mechanical response and deformation of slender structural elements.
Show more
Related publications (25)
Related concepts (2)
Line of action
In physics, the line of action (also called line of application) of a force (F) is a geometric representation of how the force is applied. It is the line through the point at which the force is applied in the same direction as the vector . The concept is essential, for instance, for understanding the net effect of multiple forces applied to a body. For example, if two forces of equal magnitude act upon a rigid body along the same line of action but in opposite directions, they cancel and have no net effect.
Net force
In mechanics, the net force is the sum of all the forces acting on an object. For example, if two forces are acting upon an object in opposite directions, and one force is greater than the other, the forces can be replaced with a single force that is the difference of the greater and smaller force. That force is the net force. When forces act upon an object, they change its acceleration. The net force is the combined effect of all the forces on the object's acceleration, as described by Newton's second law of motion.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.