Summary
In mechanics, the net force is the sum of all the forces acting on an object. For example, if two forces are acting upon an object in opposite directions, and one force is greater than the other, the forces can be replaced with a single force that is the difference of the greater and smaller force. That force is the net force. When forces act upon an object, they change its acceleration. The net force is the combined effect of all the forces on the object's acceleration, as described by Newton's second law of motion. When the net force is applied at a specific point on an object, the associated torque can be calculated. The sum of the net force and torque is called the resultant force, which causes the object to rotate in the same way as all the forces acting upon it would if they were applied individually. It is possible for all the forces acting upon an object to produce no torque at all. This happens when the net force is applied along the line of action. In some texts, the terms resultant force and net force are used as if they mean the same thing. This is not always true, especially when in complex topics like the motion of spinning objects or situations where everything is perfectly balanced, known as static equilibrium. In these cases, it's important to understand that "net force" and "resultant force" can have distinct meanings. In physics, a force is considered a vector quantity. This means that it not only has a size (or magnitude) but also a direction in which it acts. We typically represent force with the symbol F in boldface, or sometimes, we place an arrow over the symbol to indicate its vector nature, like this: . When we need to visually represent a force, we draw a line segment. This segment starts at a point A, where the force is applied, and ends at another point B. This line not only gives us the direction of the force (from A to B) but also its magnitude: the longer the line, the stronger the force. One of the essential concepts in physics is that forces can be added together, which is the basis of vector addition.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.