ExponentiationIn mathematics, exponentiation is an operation involving two numbers, the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; this is pronounced as "b (raised) to the (power of) n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases: The exponent is usually shown as a superscript to the right of the base.
Slash (punctuation)The slash is the oblique slanting line punctuation mark . Also known as a stroke, a solidus, a forward slash or several other historical or technical names including oblique and virgule. Once used to mark periods and commas, the slash is now used to represent division and fractions, exclusive 'or' and inclusive 'or', and as a date separator. A slash in the reverse direction is known as a backslash. Slashes may be found in early writing as a variant form of dashes, vertical strokes, etc.
Roman numeralsRoman numerals are a numeral system that originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers are written with combinations of letters from the Latin alphabet, each letter with a fixed integer value. Modern style uses only these seven: The use of Roman numerals continued long after the decline of the Roman Empire. From the 14th century on, Roman numerals began to be replaced by Arabic numerals; however, this process was gradual, and the use of Roman numerals persists in some applications to this day.
NibbleIn computing, a nibble (occasionally nybble, nyble, or nybl to match the spelling of byte) is a four-bit aggregation, or half an octet. It is also known as half-byte or tetrade. In a networking or telecommunication context, the nibble is often called a semi-octet, quadbit, or quartet. A nibble has sixteen (24) possible values. A nibble can be represented by a single hexadecimal digit (–) and called a hex digit. A full byte (octet) is represented by two hexadecimal digits (–); therefore, it is common to display a byte of information as two nibbles.
Numeral systemA numeral system is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner. The same sequence of symbols may represent different numbers in different numeral systems. For example, "11" represents the number eleven in the decimal numeral system (today, the most common system globally), the number three in the binary numeral system (used in modern computers), and the number two in the unary numeral system (used in tallying scores).
InterpunctAn interpunct , also known as an interpoint, middle dot, middot, centered dot or centred dot, is a punctuation mark consisting of a vertically centered dot used for interword separation in Classical Latin. (Word-separating spaces did not appear until some time between 600 and 800 CE.) It appears in a variety of uses in some modern languages and is present in Unicode as . The multiplication dot (Unicode ) is frequently used in mathematical and scientific notation, and it may differ in appearance from the interpunct.
Binary-coded decimalIn computing and electronic systems, binary-coded decimal (BCD) is a class of binary encodings of decimal numbers where each digit is represented by a fixed number of bits, usually four or eight. Sometimes, special bit patterns are used for a sign or other indications (e.g. error or overflow). In byte-oriented systems (i.e. most modern computers), the term unpacked BCD usually implies a full byte for each digit (often including a sign), whereas packed BCD typically encodes two digits within a single byte by taking advantage of the fact that four bits are enough to represent the range 0 to 9.
Significant figuresSignificant figures (also known as the significant digits, precision or resolution) of a number in positional notation are digits in the number that are reliable and necessary to indicate the quantity of something. If a number expressing the result of a measurement (e.g., length, pressure, volume, or mass) has more digits than the number of digits allowed by the measurement resolution, then only as many digits as allowed by the measurement resolution are reliable, and so only these can be significant figures.
0.999...In mathematics, 0.999... (also written as 0. or 0.) denotes the repeating decimal consisting of an unending sequence of 9s after the decimal point. This repeating decimal represents the smallest number no less than every decimal number in the sequence (0.9, 0.99, 0.999, ...); that is, the supremum of this sequence. This number is equal to1. In other words, "0.999..." is not "almost exactly" or "very, very nearly but not quite" 1 - rather, "0.999..." and "1" represent the same number.
Decimal representationA decimal representation of a non-negative real number r is its expression as a sequence of symbols consisting of decimal digits traditionally written with a single separator: Here is the decimal separator, k is a nonnegative integer, and are digits, which are symbols representing integers in the range 0, ..., 9. Commonly, if The sequence of the —the digits after the dot—is generally infinite. If it is finite, the lacking digits are assumed to be 0.