In mathematics, two sequences of numbers, often experimental data, are proportional or directly proportional if their corresponding elements have a constant ratio. The ratio is called coefficient of proportionality (or proportionality constant) and its reciprocal is known as constant of normalization (or normalizing constant). Two sequences are inversely proportional if corresponding elements have a constant product, also called the coefficient of proportionality.
This definition is commonly extended to related varying quantities, which are often called variables. This meaning of variable is not the common meaning of the term in mathematics (see variable (mathematics)); these two different concepts share the same name for historical reasons.
Two functions and are proportional if their ratio is a constant function.
If several pairs of variables share the same direct proportionality constant, the equation expressing the equality of these ratios is called a proportion, e.g., a/b = x/y = ⋯ = k (for details see Ratio).
Proportionality is closely related to linearity.
Equals sign
Given an independent variable x and a dependent variable y, y is directly proportional to x if there is a non-zero constant k such that
The relation is often denoted using the symbols "∝" (not to be confused with the Greek letter alpha) or "~":
or
For the proportionality constant can be expressed as the ratio
It is also called the constant of variation or constant of proportionality.
A direct proportionality can also be viewed as a linear equation in two variables with a y-intercept of 0 and a slope of k. This corresponds to linear growth.
If an object travels at a constant speed, then the distance traveled is directly proportional to the time spent traveling, with the speed being the constant of proportionality.
The circumference of a circle is directly proportional to its diameter, with the constant of proportionality equal to pi.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.
Newton's law of universal gravitation is usually stated as that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between their centers. The publication of the law has become known as the "first great unification", as it marked the unification of the previously described phenomena of gravity on Earth with known astronomical behaviors.
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides. The theorem can be written as an equation relating the lengths of the sides a, b and the hypotenuse c, sometimes called the Pythagorean equation: The theorem is named for the Greek philosopher Pythagoras, born around 570 BC.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
Le but du cours de physique générale est de donner à l'étudiant.e les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant.e est capable d
Many real‐life treatments are of limited supply and cannot be provided to all individuals in the population. For example, patients on the liver transplant waiting list usually cannot be assigned a liver transplant immediately at the time they reach highest ...
2023
, ,
Merocyanine photoacids are molecular photoswitches that can be used to regulate acid-base reactions reversibly. Despite their growing impact across multiple research areas including materials science and nanotechnology, the effect of temperature on their f ...
BACKGROUND: Rapid access to a trauma centre for severely injured road accident victims, conceptualised as the Golden Hour, links access time to definitive treatment within 1 hour of trauma with reduced risks of morbidity and mortality. Access times have no ...