Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In physical geography, a channel is a type of landform consisting of the outline of a path of relatively shallow and narrow body of water or of other fluids (e.g., lava), most commonly the confine of a river, river delta or strait. The word is generally used to refer to a natural formation of a narrow and is cognate to canal, which is more commonly used to denote an artificial formation. Channels are important for the functionality of ports and other bodies of water used for navigability for shipping. Naturally, channels will change their depth and capacity due to erosion and deposition processes. Humans maintain navigable channels by dredging and other engineering processes. The term is also traditionally used to describe the waterless surface features on Venus. Channel initiation refers to the site on a mountain slope where water begins to flow between identifiable banks. This site is referred to as the channel head and it marks an important boundary between hillslope processes and fluvial processes. The channel head is the most upslope part of a channel network and is defined by flowing water between defined identifiable banks. A channel head forms as overland flow and/or subsurface flow accumulate to a point where shear stress can overcome erosion resistance of the ground surface. Channel heads are often associated with colluvium, hollows and landslides. Overland flow is a primary factor in channel initiation where saturation overland flow deepens to increase shear stress and begin channel incision. Overland flows converge in topographical depressions where channel initiation begins. Soil composition, vegetation, precipitation, and topography dictate the amount and rate of overland flow. The composition of a soil determines how quickly saturation occurs and cohesive strength retards the entrainment of material from overland flows. Vegetation slows infiltration rates during precipitation events and plant roots anchor soil on hillslopes. Subsurface flow destabilizes soil and resurfaces on hillslopes where channel heads are often formed.
Andrea Rinaldo, Peng Gao, Yijin Wang