In mathematics, a concrete category is a that is equipped with a faithful functor to the (or sometimes to another category, see Relative concreteness below). This functor makes it possible to think of the objects of the category as sets with additional structure, and of its morphisms as structure-preserving functions. Many important categories have obvious interpretations as concrete categories, for example the and the , and trivially also the category of sets itself. On the other hand, the is not concretizable, i.e. it does not admit a faithful functor to the category of sets.
A concrete category, when defined without reference to the notion of a category, consists of a class of objects, each equipped with an underlying set; and for any two objects A and B a set of functions, called morphisms, from the underlying set of A to the underlying set of B. Furthermore, for every object A, the identity function on the underlying set of A must be a morphism from A to A, and the composition of a morphism from A to B followed by a morphism from B to C must be a morphism from A to C.
A concrete category is a pair (C,U) such that
C is a category, and
U : C → Set (the category of sets and functions) is a faithful functor.
The functor U is to be thought of as a forgetful functor, which assigns to every object of C its "underlying set", and to every morphism in C its "underlying function".
A category C is concretizable if there exists a concrete category (C,U);
i.e., if there exists a faithful functor U: C → Set. All small categories are concretizable: define U so that its object part maps each object b of C to the set of all morphisms of C whose codomain is b (i.e. all morphisms of the form f: a → b for any object a of C), and its morphism part maps each morphism g: b → c of C to the function U(g): U(b) → U(c) which maps each member f: a → b of U(b) to the composition gf: a → c, a member of U(c). (Item 6 under expresses the same U in less elementary language via presheaves.) The section exhibits two large categories that are not concretizable.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
In mathematics, particularly in , a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in analysis and topology, continuous functions, and so on.
In mathematics, a topos (USˈtɒpɒs, UKˈtoʊpoʊs,_ˈtoʊpɒs; plural topoi ˈtɒpɔɪ or ˈtoʊpɔɪ, or toposes) is a that behaves like the category of sheaves of sets on a topological space (or more generally: on a site). Topoi behave much like the and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic. The mathematical field that studies topoi is called topos theory.
In mathematics, in the area of , a forgetful functor (also known as a stripping functor) 'forgets' or drops some or all of the input's structure or properties 'before' mapping to the output. For an algebraic structure of a given signature, this may be expressed by curtailing the signature: the new signature is an edited form of the old one. If the signature is left as an empty list, the functor is simply to take the underlying set of a structure.
We define filter quotients of -categories and prove that filter quotients preserve the structure of an elementary -topos and in particular lift the filter quotient of the underlying elementary topos. We then specialize to the case of filter products of -ca ...
To achieve conservation objectives for threatened and endangered species, managers must choose among potential recovery actions based on their efficacy. Yet, a lack of standardization in defining how conservation actions support recovery objectives can imp ...
We apply the Acyclicity Theorem of Hess, Kedziorek, Riehl, and Shipley (recently corrected by Garner, Kedziorek, and Riehl) to establishing the existence of model category structure on categories of coalgebras over comonads arising from simplicial adjuncti ...