Lecture

Eigenvalues and Eigenvectors: Understanding Matrix Properties

In course
DEMO: non occaecat
Cupidatat aute consequat quis est dolore commodo velit ea. Duis eiusmod tempor velit non anim do ad consequat. Irure nulla ad dolore dolore. Ullamco non qui exercitation fugiat fugiat. Nostrud laboris mollit exercitation ex. Amet nostrud excepteur velit deserunt nostrud duis. Excepteur est deserunt anim exercitation elit aliqua labore ex tempor.
Login to see this section
Description

This lecture covers the concepts of eigenvalues and eigenvectors, essential in linear algebra. The instructor explains how to find eigenvalues by solving characteristic equations and how to determine eigenvectors by calculating the null space of the matrix. Through examples, the lecture demonstrates the process of finding eigenvalues and eigenvectors for different matrices, including triangular matrices. The lecture also explores the application of eigenvalues and eigenvectors in solving systems of linear equations and understanding Fibonacci sequences. By the end, the lecture presents a detailed derivation of a formula to calculate the nth Fibonacci number using eigenvalues and eigenvectors.

Instructor
labore veniam sint do
Esse ut aute ex sunt velit velit ex cupidatat pariatur ex voluptate aliqua cillum. Commodo do et aute amet velit veniam pariatur non consectetur et. Sunt minim eu non nulla. Eiusmod sunt ad tempor voluptate adipisicing. Magna in nulla mollit et pariatur eu veniam adipisicing cillum do incididunt exercitation aliqua amet. Commodo culpa nisi nisi aliqua labore sint culpa.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood