HeptadecagonIn geometry, a heptadecagon, septadecagon or 17-gon is a seventeen-sided polygon. A regular heptadecagon is represented by the Schläfli symbol {17}. As 17 is a Fermat prime, the regular heptadecagon is a constructible polygon (that is, one that can be constructed using a compass and unmarked straightedge): this was shown by Carl Friedrich Gauss in 1796 at the age of 19. This proof represented the first progress in regular polygon construction in over 2000 years.
Pierpont primeIn number theory, a Pierpont prime is a prime number of the form for some nonnegative integers u and v. That is, they are the prime numbers p for which p − 1 is 3-smooth. They are named after the mathematician James Pierpont, who used them to characterize the regular polygons that can be constructed using conic sections. The same characterization applies to polygons that can be constructed using ruler, compass, and angle trisector, or using paper folding. Except for 2 and the Fermat primes, every Pierpont prime must be 1 modulo 6.
Lucas sequenceIn mathematics, the Lucas sequences and are certain constant-recursive integer sequences that satisfy the recurrence relation where and are fixed integers. Any sequence satisfying this recurrence relation can be represented as a linear combination of the Lucas sequences and More generally, Lucas sequences and represent sequences of polynomials in and with integer coefficients. Famous examples of Lucas sequences include the Fibonacci numbers, Mersenne numbers, Pell numbers, Lucas numbers, Jacobsthal numbers, and a superset of Fermat numbers (see below).
John SelfridgeJohn Lewis Selfridge (February 17, 1927 – October 31, 2010), was an American mathematician who contributed to the fields of analytic number theory, computational number theory, and combinatorics. Selfridge received his Ph.D. in 1958 from the University of California, Los Angeles under the supervision of Theodore Motzkin. Selfridge served on the faculties of the University of Illinois at Urbana-Champaign and Northern Illinois University (NIU) from 1971 to 1991 (retirement), chairing the NIU Department of Mathematical Sciences 1972–1976 and 1986–1990.
PentagonIn geometry, a pentagon (from the Greek πέντε pente meaning five and γωνία gonia meaning angle) is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°. A pentagon may be simple or self-intersecting. A self-intersecting regular pentagon (or star pentagon) is called a pentagram. A regular pentagon has Schläfli symbol {5} and interior angles of 108°. A regular pentagon has five lines of reflectional symmetry, and rotational symmetry of order 5 (through 72°, 144°, 216° and 288°).
Double Mersenne numberIn mathematics, a double Mersenne number is a Mersenne number of the form where p is prime. The first four terms of the sequence of double Mersenne numbers are : A double Mersenne number that is prime is called a double Mersenne prime. Since a Mersenne number Mp can be prime only if p is prime, (see Mersenne prime for a proof), a double Mersenne number can be prime only if Mp is itself a Mersenne prime. For the first values of p for which Mp is prime, is known to be prime for p = 2, 3, 5, 7 while explicit factors of have been found for p = 13, 17, 19, and 31.
Mersenne primeIn mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form Mn = 2n − 1 for some integer n. They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17th century. If n is a composite number then so is 2n − 1. Therefore, an equivalent definition of the Mersenne primes is that they are the prime numbers of the form Mp = 2p − 1 for some prime p. The exponents n which give Mersenne primes are 2, 3, 5, 7, 13, 17, 19, 31, .
FactorizationIn mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x2 – 4. Factorization is not usually considered meaningful within number systems possessing division, such as the real or complex numbers, since any can be trivially written as whenever is not zero.
Euler's totient functionIn number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as or , and may also be called Euler's phi function. In other words, it is the number of integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd(n, k) is equal to 1. The integers k of this form are sometimes referred to as totatives of n. For example, the totatives of n = 9 are the six numbers 1, 2, 4, 5, 7 and 8.
Proth's theoremIn number theory, Proth's theorem is a primality test for Proth numbers. It states that if p is a Proth number, of the form k2n + 1 with k odd and k < 2n, and if there exists an integer a for which then p is prime. In this case p is called a Proth prime. This is a practical test because if p is prime, any chosen a has about a 50 percent chance of working, furthermore, since the calculation is mod p, only values of a smaller than p have to be taken into consideration.