HeptadécagoneUn heptadécagone est un polygone à 17 sommets, donc 17 côtés et 119 diagonales. La somme des angles internes d'un heptadécagone non croisé vaut , soit . Dans l'heptadécagone régulier convexe, chaque angle interne vaut donc , soit environ 158,82°. Un heptadécagone régulier est un heptadécagone dont les 17 côtés ont la même longueur et dont les angles internes ont même mesure. Il y en a huit : sept étoilés (les heptadécagrammes notés {17/k} pour k de 2 à 8) et un convexe (noté {17}).
Nombre premier de PierpontEn arithmétique, les nombres premiers de Pierpont — nommés ainsi d'après James Pierpont — sont les nombres premiers de la forme 23 + 1, pour u et v deux entiers naturels. On montre facilement que si v = 0 et u > 0, alors u doit être une puissance de 2, c'est-à-dire que 2 + 1 doit être un nombre de Fermat. Par ailleurs, si v > 0 alors u doit être lui aussi non nul (car si v > 0 alors le nombre pair est strictement supérieur à 2 et par conséquent composé) donc le nombre de Pierpont est de la forme 6k + 1.
Suite de LucasEn mathématiques, les suites de Lucas U(P, Q) et V(P, Q) associées à deux entiers P et Q sont deux suites récurrentes linéaires d'ordre 2 à valeurs entières qui généralisent respectivement la suite de Fibonacci et celle de Fibonacci-Lucas, correspondant aux valeurs P = 1 et Q = –1. Elles doivent leur nom au mathématicien français Édouard Lucas. Soient P et Q deux entiers non nuls tels que (pour éviter les cas dégénérés). Les suites de Lucas U(P, Q) et V(P, Q) sont définies par les relations de récurrence linéaire et Notons l'une des deux racines carrées de Δ (éventuellement dans C).
John SelfridgeJohn Lewis Selfridge (né le à Ketchikan en Alaska et mort le à DeKalb (Illinois)), est un mathématicien américain qui a travaillé en théorie analytique des nombres, théorie algorithmique des nombres, et combinatoire. Il est coauteur de 14 articles avec Paul Erdős (ce qui lui donne le nombre d'Erdős 1). Selfridge obtient son Ph. D. en 1958 à l'université de Californie à Los Angeles sous la supervision de Theodore Motzkin.
PentagoneEn géométrie, un pentagone est un polygone à cinq sommets, donc cinq côtés et cinq diagonales. Un pentagone est soit simple (convexe ou concave), soit croisé. Le pentagone régulier étoilé est le pentagramme. Le terme « pentagone » dérive du latin pentagonum de même sens, substantivation de l'adjectif pentagonus, lui-même emprunté au grec ancien, πεντάγωνος (pentágônos), « pentagonal », « qui a cinq angles, cinq côtés ». Le terme grec est lui-même construit à partir de πέντε (pénte), « cinq », et γωνία (gônía), « angle ».
Nombre double de MersenneEn mathématiques, un nombre double de Mersenne est un nombre de Mersenne de la forme où n est un entier strictement positif et M désigne le n-ième nombre de Mersenne. Les plus petits nombres doubles de Mersenne sont donc : M = M = 1 ; M = M = 7 ; M = M = 127 ; M = M = = 7 × 31 × 151 ; M = M = 2 147 483 647 ; M = M = = 7 × 73 × 127 × 337 × × ; M = M = . Puisqu'un nombre de Mersenne M ne peut être premier que si n est premier (condition nécessaire mais pas suffisante), un nombre double de Mersenne M ne peut être premier que si M est un nombre de Mersenne premier (ce qui nécessite avant tout que p le soit : on a vu par exemple que M et M ne sont pas premiers).
Nombre de Mersenne premiervignette|droite|Le moine français Marin Mersenne (1588-1648) En mathématiques et plus précisément en arithmétique, un nombre de Mersenne est un nombre de la forme 2 − 1 (souvent noté ), où est un entier naturel non nul ; un nombre de Mersenne premier (ou nombre premier de Mersenne) est donc un nombre premier de cette forme. Ces nombres doivent leur nom au religieux érudit et mathématicien français du Marin Mersenne ; mais, près de auparavant, Euclide les utilisait déjà pour étudier les nombres parfaits.
FactorisationEn mathématiques, la factorisation consiste à écrire une expression algébrique (notamment une somme), un nombre, une matrice sous la forme d'un produit. Cette transformation peut se faire suivant différentes techniques détaillées ci-dessous. Les enjeux de la factorisation sont très divers : à un niveau élémentaire, le but peut être de ramener la résolution d'une équation à celle d'une équation produit-nul, ou la simplification d'une écriture fractionnaire ; à un niveau intermédiaire, la difficulté algorithmique présumée de la factorisation des nombres entiers en produit de facteurs premiers est à la base de la fiabilité du cryptosystème RSA.
Indicatrice d'Eulervignette|upright=1.5|Les mille premières valeurs de φ(n). En mathématiques, l'indicatrice d'Euler est une fonction arithmétique de la théorie des nombres, qui à tout entier naturel n non nul associe le nombre d'entiers compris entre 1 et n (inclus) et premiers avec n. Elle intervient en mathématiques pures, à la fois en théorie des groupes, en théorie algébrique des nombres et en théorie analytique des nombres. En mathématiques appliquées, à travers l'arithmétique modulaire, elle joue un rôle important en théorie de l'information et plus particulièrement en cryptologie.
Théorème de ProthEn théorie des nombres, le théorème de Proth est le test de primalité suivant, spécifique aux nombres de Proth, c'est-à-dire aux entiers naturels de la forme p = k2n + 1 avec 0 < k < 2n : ou, de façon équivalente mais un peu plus fidèle : Pour tout nombre premier p > 2, il existe des entiers a satisfaisant cette congruence : ce sont exactement les a tels que (a/p) = –1, soit la moitié des entiers non divisibles par p, d'après le critère d'Euler.