A thermoelectric generator (TEG), also called a Seebeck generator, is a solid state device that converts heat flux (temperature differences) directly into electrical energy through a phenomenon called the Seebeck effect (a form of thermoelectric effect). Thermoelectric generators function like heat engines, but are less bulky and have no moving parts. However, TEGs are typically more expensive and less efficient. Thermoelectric generators could be used in power plants and factories to convert waste heat into additional electrical power and in automobiles as automotive thermoelectric generators (ATGs) to increase fuel efficiency. Radioisotope thermoelectric generators use radioisotopes to generate the required temperature difference to power space probes. Thermoelectric generators can also be used alongside solar panels. In 1821, Thomas Johann Seebeck discovered that a thermal gradient formed between two different conducting material (has electromagnetic property) can produce electricity. At the heart of the thermoelectric effect is the fact that a temperature gradient in a conducting material results in heat flow; this results in the diffusion of charge carriers. The flow of charge carriers between the hot and cold regions in turn creates a voltage difference. In 1834, Jean Charles Athanase Peltier discovered the reverse effect, that running an electric current through the junction of two dissimilar conductors could, depending on the direction of the current, cause it to act as a heater or cooler. The typical efficiency of TEGs is around 5–8%, although it can be higher. Older devices used bimetallic junctions and were bulky. More recent devices use highly doped semiconductors made from bismuth telluride (Bi2Te3), lead telluride (PbTe), calcium manganese oxide (Ca2Mn3O8), or combinations thereof, depending on application temperature. These are solid-state devices and unlike dynamos have no moving parts, with the occasional exception of a fan or pump to improve heat transfer.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
MICRO-505: Organic and printed electronics
This course addresses the implementation of organic and printed electronics technologies using large area manufacturing techniques. It will provide knowledge on materials, printing techniques, devices
ME-469: Nano-scale heat transfer
In this course we study heat transfer (and energy conversion) from a microscopic perspective. First we focus on understanding why classical laws (i.e. Fourier Law) are what they are and what are their
ME-341: Heat and mass transfer
This course covers fundamentals of heat transfer and applications to practical problems. Emphasis will be on developing a physical and analytical understanding of conductive, convective, and radiative
Show more
Related concepts (9)
Thermoelectric materials
Thermoelectric materials show the thermoelectric effect in a strong or convenient form. The thermoelectric effect refers to phenomena by which either a temperature difference creates an electric potential or an electric current creates a temperature difference. These phenomena are known more specifically as the Seebeck effect (creating a voltage from temperature difference), Peltier effect (driving heat flow with an electric current), and Thomson effect (reversible heating or cooling within a conductor when there is both an electric current and a temperature gradient).
Seebeck coefficient
The Seebeck coefficient (also known as thermopower, thermoelectric power, and thermoelectric sensitivity) of a material is a measure of the magnitude of an induced thermoelectric voltage in response to a temperature difference across that material, as induced by the Seebeck effect. The SI unit of the Seebeck coefficient is volts per kelvin (V/K), although it is more often given in microvolts per kelvin (μV/K). The use of materials with a high Seebeck coefficient is one of many important factors for the efficient behaviour of thermoelectric generators and thermoelectric coolers.
Thermoelectric cooling
Thermoelectric cooling uses the Peltier effect to create a heat flux at the junction of two different types of materials. A Peltier cooler, heater, or thermoelectric heat pump is a solid-state active heat pump which transfers heat from one side of the device to the other, with consumption of electrical energy, depending on the direction of the current. Such an instrument is also called a Peltier device, Peltier heat pump, solid state refrigerator, or thermoelectric cooler (TEC) and occasionally a thermoelectric battery.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.