Summary
Dynamic routing, also called adaptive routing, is a process where a router can forward data via a different route for a given destination based on the current conditions of the communication circuits within a system. The term is most commonly associated with data networking to describe the capability of a network to 'route around' damage, such as loss of a node or a connection between nodes, as long as other path choices are available. Dynamic routing allows as many routes as possible to remain valid in response to the change. Systems that do not implement dynamic routing are described as using static routing, where routes through a network are described by fixed paths. A change, such as the loss of a node, or loss of a connection between nodes, is not compensated for. This means that anything that wishes to take an affected path will either have to wait for the failure to be repaired before restarting its journey, or will have to fail to reach its destination and give up the journey. There are several protocols that can be used for dynamic routing. Routing Information Protocol (RIP) is a distance-vector routing protocol that prevents routing loops by implementing a limit on the number of hops allowed in a path from source to destination. Open Shortest Path First (OSPF) uses a link state routing (LSR) algorithm and falls into the group of interior gateway protocols (IGPs). Intermediate System to Intermediate System (IS-IS) determines the best route for data through a packet-switched network. Interior Gateway Routing Protocol (IGRP) and its advanced form Enhanced Interior Gateway Routing Protocol (EIGRP) are used by routers to exchange routing data within an autonomous system. Many systems use some next-hop forwarding protocol—when a packet arrives at some node, that node decides on-the-fly which link to use to push the packet one hop closer to its final destination. Routers that use some adaptive protocols, such as the Spanning Tree Protocol, in order to "avoid bridge loops and routing loops", calculate a tree that indicates the one "best" link for a packet to get to its destination.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (2)

Loading

Loading

Related units

No results

Related concepts (2)
Routing
Routing is the process of selecting a path for traffic in a network or between or across multiple networks. Broadly, routing is performed in many types of networks, including circuit-switched networks, such as the public switched telephone network (PSTN), and computer networks, such as the Internet. In packet switching networks, routing is the higher-level decision making that directs network packets from their source toward their destination through intermediate network nodes by specific packet forwarding mechanisms.
Dynamic routing
Dynamic routing, also called adaptive routing, is a process where a router can forward data via a different route for a given destination based on the current conditions of the communication circuits within a system. The term is most commonly associated with data networking to describe the capability of a network to 'route around' damage, such as loss of a node or a connection between nodes, as long as other path choices are available. Dynamic routing allows as many routes as possible to remain valid in response to the change.
Related courses (3)
EE-320: IC design I
Introduction to the design of analog CMOS integrated circuits at the transistor level. Understanding and design of basic structures.
CS-438: Decentralized systems engineering
A decentralized system is one that works when no single party is in charge or fully trusted. This course teaches decentralized systems principles while guiding students through the development and tes
CS-234: Technologies for democratic society
This course will offer students a broad but hands-on introduction to technologies of human self-organization.
Related lectures (42)
Differential Amplifier Design
Covers the design of a differential amplifier with key parameters like gain and bias current.
Bellman Ford: Shortest Paths
Introduces the Bellman-Ford algorithm for finding shortest paths in directed graphs with edge weights.
Bellman-Ford Algorithm: Analysis and Correctness
Explores the Bellman-Ford algorithm, its correctness, and practical applications in dynamic networks and real-world scenarios.
Show more
Related MOOCs

No results