HomeomorphismIn the mathematical field of topology, a homeomorphism (, named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the —that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same.
Infimum and supremumIn mathematics, the infimum (abbreviated inf; plural infima) of a subset of a partially ordered set is the greatest element in that is less than or equal to each element of if such an element exists. In other words, it is the greatest element of that is lower or equal to the lowest element of . Consequently, the term greatest lower bound (abbreviated as ) is also commonly used. The supremum (abbreviated sup; plural suprema) of a subset of a partially ordered set is the least element in that is greater than or equal to each element of if such an element exists.
Asymmetric relationIn mathematics, an asymmetric relation is a binary relation on a set where for all if is related to then is not related to A binary relation on is any subset of Given write if and only if which means that is shorthand for The expression is read as " is related to by " The binary relation is called if for all if is true then is false; that is, if then This can be written in the notation of first-order logic as A logically equivalent definition is: for all at least one of and is , which in first-order logic c
Symmetric relationA symmetric relation is a type of binary relation. An example is the relation "is equal to", because if a = b is true then b = a is also true. Formally, a binary relation R over a set X is symmetric if: where the notation means that . If RT represents the converse of R, then R is symmetric if and only if R = RT. Symmetry, along with reflexivity and transitivity, are the three defining properties of an equivalence relation. "is equal to" (equality) (whereas "is less than" is not symmetric) "is comparable to", for elements of a partially ordered set ".
Antisymmetric relationIn mathematics, a binary relation on a set is antisymmetric if there is no pair of distinct elements of each of which is related by to the other. More formally, is antisymmetric precisely if for all or equivalently, The definition of antisymmetry says nothing about whether actually holds or not for any . An antisymmetric relation on a set may be reflexive (that is, for all ), irreflexive (that is, for no ), or neither reflexive nor irreflexive. A relation is asymmetric if and only if it is both antisymmetric and irreflexive.
Group isomorphismIn abstract algebra, a group isomorphism is a function between two groups that sets up a one-to-one correspondence between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the groups are called isomorphic. From the standpoint of group theory, isomorphic groups have the same properties and need not be distinguished.
Singleton (mathematics)In mathematics, a singleton, also known as a unit set or one-point set, is a set with exactly one element. For example, the set is a singleton whose single element is . Within the framework of Zermelo–Fraenkel set theory, the axiom of regularity guarantees that no set is an element of itself. This implies that a singleton is necessarily distinct from the element it contains, thus 1 and {1} are not the same thing, and the empty set is distinct from the set containing only the empty set.
SetoidIn mathematics, a setoid (X, ~) is a set (or type) X equipped with an equivalence relation ~. A setoid may also be called E-set, Bishop set, or extensional set. Setoids are studied especially in proof theory and in type-theoretic foundations of mathematics. Often in mathematics, when one defines an equivalence relation on a set, one immediately forms the quotient set (turning equivalence into equality).
Uniqueness quantificationIn mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!" or "∃=1". For example, the formal statement may be read as "there is exactly one natural number such that ". The most common technique to prove the unique existence of a certain object is to first prove the existence of the entity with the desired condition, and then to prove that any two such entities (say, and ) must be equal to each other (i.
Partial equivalence relationIn mathematics, a partial equivalence relation (often abbreviated as PER, in older literature also called restricted equivalence relation) is a homogeneous binary relation that is symmetric and transitive. If the relation is also reflexive, then the relation is an equivalence relation. Formally, a relation on a set is a PER if it holds for all that: if , then (symmetry) if and , then (transitivity) Another more intuitive definition is that on a set is a PER if there is some subset of such that and is an equivalence relation on .