HoméomorphismeEn topologie, un homéomorphisme est une application bijective continue, d'un espace topologique dans un autre, dont la bijection réciproque est continue. Dans ce cas, les deux espaces topologiques sont dits homéomorphes. La notion d'homéomorphisme est la bonne notion pour dire que deux espaces topologiques sont « le même » vu différemment. C'est la raison pour laquelle les homéomorphismes sont les isomorphismes de la catégorie des espaces topologiques. Soit et des espaces topologiques, une application bijective de sur .
Borne supérieure et borne inférieureEn mathématiques, les notions de borne supérieure et borne inférieure d'un ensemble de nombres réels interviennent en analyse, comme cas particulier de la définition générale suivante : la borne supérieure (ou le supremum) d'une partie d'un ensemble (partiellement) ordonné est le plus petit de ses majorants. Une telle borne n'existe pas toujours, mais si elle existe alors elle est unique. Elle n'appartient pas nécessairement à la partie considérée. Dualement, la borne inférieure (ou l'infimum) d'une partie est le plus grand de ses minorants.
Relation asymétriqueEn mathématiques, une relation (binaire, interne) R est dite asymétrique si elle vérifie : ou encore, si son graphe est disjoint de celui de sa relation réciproque. L'asymétrie est parfois appelée « antisymétrie forte », par opposition à l'antisymétrie (usuelle, ou « faible »). En effet, une relation est asymétrique si et seulement si elle est à la fois antisymétrique et antiréflexive. les relations d'ordre strict, qui sont les relations transitives et asymétriques ; dans les entiers, la relation "est le successeur de" ; dans un ensemble de personnes, la relation « est enfant de » : personne n'est enfant d'un de ses enfants.
Relation symétriqueEn mathématiques, une relation (binaire, interne) R est dite symétrique si elle vérifie : ou encore, si elle est égale à sa relation réciproque. Exemples : les relations d'équivalence sont les préordres symétriques ; sur l'ensemble des entiers, la relation « forme un produit pair avec » est symétrique, car la multiplication des entiers est commutative. La clôture symétrique d'une relation R est la relation (sur le même ensemble) dont le graphe est l'union de ceux de R et de sa réciproque.
Relation antisymétriqueEn mathématiques, une relation (binaire, interne) R sur un ensemble E est dite antisymétrique si elle vérifie : ce qui signifie que l'intersection de son graphe avec celui de sa relation réciproque est incluse dans la diagonale de E, autrement dit : La condition (1) peut aussi s'écrire On remarque l'antisymétrie d'une relation sur son diagramme sagittal par le fait qu'il n'y a pas de double flèche (donc que des sens uniques).
Group isomorphismIn abstract algebra, a group isomorphism is a function between two groups that sets up a one-to-one correspondence between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the groups are called isomorphic. From the standpoint of group theory, isomorphic groups have the same properties and need not be distinguished.
Singleton (mathématiques)En mathématiques, un singleton est un ensemble qui comprend exactement un élément. Le singleton dont l'élément est a se note . Soit S une classe définie par une fonction indicatrice alors S est un singleton si et seulement s’il existe y ∈ X tel que pour tout x ∈ X, La définition suivante vient de Alfred North Whitehead et Russell Le symbole ι'x désigne le singleton {x} et désigne la classe des objets identiques à x, soit l'ensemble {y / y = x}.
SetoidIn mathematics, a setoid (X, ~) is a set (or type) X equipped with an equivalence relation ~. A setoid may also be called E-set, Bishop set, or extensional set. Setoids are studied especially in proof theory and in type-theoretic foundations of mathematics. Often in mathematics, when one defines an equivalence relation on a set, one immediately forms the quotient set (turning equivalence into equality).
Unicité (mathématiques)En mathématiques, l'unicité d'un objet satisfaisant certaines propriétés est le fait que tout objet satisfaisant les mêmes propriétés lui est égal. Autrement dit, il ne peut exister deux objets différents satisfaisant ces mêmes propriétés. Cependant, une démonstration de l'unicité ne suffit pas a priori pour en déduire l'existence de l'objet. La conjonction de l'existence et de l'unicité est usuellement notée à l'aide du quantificateur « ∃! ».
Partial equivalence relationIn mathematics, a partial equivalence relation (often abbreviated as PER, in older literature also called restricted equivalence relation) is a homogeneous binary relation that is symmetric and transitive. If the relation is also reflexive, then the relation is an equivalence relation. Formally, a relation on a set is a PER if it holds for all that: if , then (symmetry) if and , then (transitivity) Another more intuitive definition is that on a set is a PER if there is some subset of such that and is an equivalence relation on .