In field theory, a branch of mathematics, the minimal polynomial of an element α of a field extension is, roughly speaking, the polynomial of lowest degree having coefficients in the field, such that α is a root of the polynomial. If the minimal polynomial of α exists, it is unique. The coefficient of the highest-degree term in the polynomial is required to be 1.
More formally, a minimal polynomial is defined relative to a field extension E/F and an element of the extension field E/F. The minimal polynomial of an element, if it exists, is a member of F[x], the ring of polynomials in the variable x with coefficients in F. Given an element α of E, let Jα be the set of all polynomials f(x) in F[x] such that f(α) = 0. The element α is called a root or zero of each polynomial in Jα
More specifically, Jα is the kernel of the ring homomorphism from F[x] to E which sends polynomials g to their value g(α) at the element α. Because it is the kernel of a ring homomorphism, Jα is an ideal of the polynomial ring F[x]: it is closed under polynomial addition and subtraction (hence containing the zero polynomial), as well as under multiplication by elements of F (which is scalar multiplication if F[x] is regarded as a vector space over F).
The zero polynomial, all of whose coefficients are 0, is in every Jα since 0αi = 0 for all α and i. This makes the zero polynomial useless for classifying different values of α into types, so it is excepted. If there are any non-zero polynomials in Jα, i.e. if the latter is not the zero ideal, then α is called an algebraic element over F, and there exists a monic polynomial of least degree in Jα. This is the minimal polynomial of α with respect to E/F. It is unique and irreducible over F. If the zero polynomial is the only member of Jα, then α is called a transcendental element over F and has no minimal polynomial with respect to E/F.
Minimal polynomials are useful for constructing and analyzing field extensions.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This is an introduction to modern algebra: groups, rings and fields.
Ring and module theory with a major emphasis on commutative algebra and a minor emphasis on homological algebra.
Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like alg
In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. Quadratic integers are algebraic integers of degree two, that is, solutions of equations of the form x2 + bx + c = 0 with b and c (usual) integers. When algebraic integers are considered, the usual integers are often called rational integers. Common examples of quadratic integers are the square roots of rational integers, such as , and the complex number i = , which generates the Gaussian integers.
In mathematics, an algebraic number field (or simply number field) is an extension field of the field of rational numbers such that the field extension has finite degree (and hence is an algebraic field extension). Thus is a field that contains and has finite dimension when considered as a vector space over . The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory.
In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to Q, the field of rational numbers. Cyclotomic fields played a crucial role in the development of modern algebra and number theory because of their relation with Fermat's Last Theorem. It was in the process of his deep investigations of the arithmetic of these fields (for prime n) – and more precisely, because of the failure of unique factorization in their rings of integers – that Ernst Kummer first introduced the concept of an ideal number and proved his celebrated congruences.
In this paper we use the Riemann zeta distribution to give a new proof of the Erdos-Kac Central Limit Theorem. That is, if zeta(s) = Sigma(n >= 1) (1)(s)(n) , s > 1, then we consider the random variable X-s with P(X-s = n) = (1) (zeta) ( ...
It is well-known that for any integral domain R, the Serre conjecture ring R(X), i.e., the localization of the univariate polynomial ring R[X] at monic polynomials, is a Bezout domain of Krull dimension
Let X be a complex projective K3 surface and let T-X be its transcendental lattice; the characteristic polynomials of isometries of T-X induced by automorphisms of X are powers of cyclotomic polynomials. Which powers of cyclotomic polynomials occur? The ai ...