Concept

Polynôme minimal (théorie des corps)

Résumé
thumb|Carl Friedrich Gauss utilise des polynômes minimaux appelés cyclotomiques pour déterminer les polygones constructibles à la règle et au compas. En théorie des corps, le polynôme minimal sur un corps commutatif K d'un élément algébrique d'une extension de K, est le polynôme unitaire de degré minimal parmi les polynômes à coefficients dans le corps de base K qui annulent l'élément. Il divise tous ces polynômes. C'est toujours un polynôme irréductible. Dans le cas d'une extension du corps des rationnels (en particulier d'un corps de nombres), on parle de nombre algébrique et donc de polynôme minimal d'un nombre algébrique. C'est une notion élémentaire utile aussi bien en théorie classique de Galois qu'en théorie algébrique des nombres. Ainsi dans une extension du corps K où le polynôme minimal de a est scindé, les éléments conjugués de a sont toutes les racines de son polynôme minimal, et les automorphismes de corps d'une telle extension (qui forment le groupe de Galois de celle-ci) laissant stable K associent nécessairement à a un de ses éléments conjugués. Une extension de K est aussi une algèbre associative sur K, et il est possible de définir plus généralement le polynôme minimal dans ce cadre, qui recouvre aussi l'algèbre linéaire et les endomorphismes d'un espace vectoriel sur K. Le polynôme minimal d'un élément algébrique a sur K est d'ailleurs également, du point de vue de l'algèbre linéaire, le polynôme minimal de l'endomorphisme x ↦ ax de l'extension vu comme K-espace vectoriel. D'autres outils de la théorie des corps, comme la trace, la norme, le polynôme caractéristique d'un élément algébrique, peuvent se définir à partir de cet endomorphisme et entretiennent les mêmes liens avec le polynôme minimal que leurs correspondants en algèbre linéaire. Ici K désigne un corps et L une extension de K, c'est-à-dire un corps contenant K. Un élément a algébrique de L sur K est un élément de L racine d'un polynôme non nul à coefficients dans K. Étant donné deux polynômes qui ont a pour racine, le reste par la division euclidienne de l'un par l'autre a encore a pour racine.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.