Examples of groupsSome elementary examples of groups in mathematics are given on Group (mathematics). Further examples are listed here. Dihedral group of order 6 Consider three colored blocks (red, green, and blue), initially placed in the order RGB. Let a be the operation "swap the first block and the second block", and b be the operation "swap the second block and the third block". We can write xy for the operation "first do y, then do x"; so that ab is the operation RGB → RBG → BRG, which could be described as "move the first two blocks one position to the right and put the third block into the first position".
Lattice of subgroupsIn mathematics, the lattice of subgroups of a group is the lattice whose elements are the subgroups of , with the partial order relation being set inclusion. In this lattice, the join of two subgroups is the subgroup generated by their union, and the meet of two subgroups is their intersection. The dihedral group Dih4 has ten subgroups, counting itself and the trivial subgroup. Five of the eight group elements generate subgroups of order two, and the other two non-identity elements both generate the same cyclic subgroup of order four.
Dicyclic groupIn group theory, a dicyclic group (notation Dicn or Q4n, ) is a particular kind of non-abelian group of order 4n (n > 1). It is an extension of the cyclic group of order 2 by a cyclic group of order 2n, giving the name di-cyclic. In the notation of exact sequences of groups, this extension can be expressed as: More generally, given any finite abelian group with an order-2 element, one can define a dicyclic group.
Trivial groupIn mathematics, a trivial group or zero group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element and so it is usually denoted as such: or depending on the context. If the group operation is denoted then it is defined by The similarly defined is also a group since its only element is its own inverse, and is hence the same as the trivial group.
Rubik's Cube groupThe Rubik's Cube group is a group that represents the structure of the Rubik's Cube mechanical puzzle. Each element of the set corresponds to a cube move, which is the effect of any sequence of rotations of the cube's faces. With this representation, not only can any cube move be represented, but any position of the cube as well, by detailing the cube moves required to rotate the solved cube into that position. Indeed with the solved position as a starting point, there is a one-to-one correspondence between each of the legal positions of the Rubik's Cube and the elements of .
Cycle graph (algebra)In group theory, a subfield of abstract algebra, a group cycle graph illustrates the various cycles of a group and is particularly useful in visualizing the structure of small finite groups. A cycle is the set of powers of a given group element a, where an, the n-th power of an element a is defined as the product of a multiplied by itself n times. The element a is said to generate the cycle. In a finite group, some non-zero power of a must be the group identity, e; the lowest such power is the order of the cycle, the number of distinct elements in it.