Lecture

Visualizing Categorical Data: Methods and Examples

In courses (3)
DEMO: et ut sunt ea
Proident reprehenderit incididunt id pariatur quis dolor nisi in commodo aute eu in aliquip. Amet minim cillum sunt aute dolor. Aliqua aliqua consectetur proident mollit. Sint eiusmod fugiat exercitation ipsum aute velit nostrud aute dolor. Ut quis fugiat ipsum amet adipisicing sit nisi enim sunt minim.
DEMO: Lorem culpa
Ex minim proident id aliqua ea commodo tempor ut. Cillum est magna elit proident commodo ea voluptate ea aliqua. Cupidatat esse dolore duis laboris occaecat excepteur occaecat mollit quis labore consectetur anim duis consequat. Esse do occaecat magna velit deserunt officia aliqua consectetur ipsum. Laborum aliqua officia commodo excepteur incididunt incididunt laboris commodo exercitation cupidatat do sit. Voluptate excepteur cupidatat eiusmod magna reprehenderit ullamco quis occaecat adipisicing.
DEMO: non est culpa qui
Occaecat laborum occaecat sunt exercitation aliquip veniam. Quis est qui aliquip laboris ex aute. Dolor in ex eiusmod sit. Minim labore consectetur aute pariatur non.
Login to see this section
Description

This lecture covers tools for visualizing categorical and discrete data, focusing on exploratory methods that show the data to detect patterns, trends, and anomalies. It includes plots for model-based methods like residual plots and effect plots, as well as examples of classical music listening data visualization. The lecture also explains diagnostic plots, the test of independence, Fisher's exact test, and Simpson's paradox.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.