**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Serre model structure: Left and right homotopy

Description

This lecture delves into the Serre model structure on Top, exploring left and right homotopy equivalences, weak homotopy equivalences, and the 2-out-of-3 property. The lecture discusses the definition of the Serre model structure, fibrant objects, and the notion of retracts of relative cell complexes.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

Instructor

Related concepts (122)

MATH-436: Homotopical algebra

This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous

CW complex

A CW complex (also called cellular complex or cell complex) is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead to meet the needs of homotopy theory. This class of spaces is broader and has some better properties than simplicial complexes, but still retains a combinatorial nature that allows for computation (often with a much smaller complex). The C stands for "closure-finite", and the W for "weak" topology.

Homotopy group

In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space. To define the n-th homotopy group, the base-point-preserving maps from an n-dimensional sphere (with base point) into a given space (with base point) are collected into equivalence classes, called homotopy classes.

Fundamental group

In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent (or the stronger case of homeomorphic) have isomorphic fundamental groups.

Weak equivalence (homotopy theory)

In mathematics, a weak equivalence is a notion from homotopy theory that in some sense identifies objects that have the same "shape". This notion is formalized in the axiomatic definition of a . A model category is a with classes of morphisms called weak equivalences, fibrations, and cofibrations, satisfying several axioms. The associated of a model category has the same objects, but the morphisms are changed in order to make the weak equivalences into isomorphisms.

Model category

In mathematics, particularly in homotopy theory, a model category is a with distinguished classes of morphisms ('arrows') called 'weak equivalences', 'fibrations' and 'cofibrations' satisfying certain axioms relating them. These abstract from the category of topological spaces or of chain complexes ( theory). The concept was introduced by . In recent decades, the language of model categories has been used in some parts of algebraic K-theory and algebraic geometry, where homotopy-theoretic approaches led to deep results.

Related lectures (134)

Serre model structure on TopMATH-436: Homotopical algebra

Explores the Serre model structure on Top, focusing on right and left homotopy.

The Topological Künneth TheoremMATH-506: Topology IV.b - cohomology rings

Explores the topological Künneth Theorem, emphasizing commutativity and homotopy equivalence in chain complexes.

Model Categories: Properties and Structures

Covers the properties and structures of model categories, focusing on factorizations, model structures, and homotopy of continuous maps.

Bar Construction: Homology Groups and Classifying SpaceMATH-506: Topology IV.b - cohomology rings

Covers the bar construction method, homology groups, classifying space, and the Hopf formula.

Group CohomologyMATH-506: Topology IV.b - cohomology rings

Covers the concept of group cohomology, focusing on chain complexes, cochain complexes, cup products, and group rings.