Lecture

Conjugate Gradient Methods: Overview

Description

This lecture covers the review of steepest descent and conjugate gradient methods, preconditioning, generalized conjugate gradient method, and nonlinear conjugate gradient methods. It discusses the line search using the Newton-Raphson method, singular value decomposition, and the convergence of the two algorithms. The instructor explains the remaining problems and solutions, such as preconditioning, generalized CG method, and nonlinear conjugate method. The concept of Jacobi preconditioning is introduced, along with the idea of solving Ax = b indirectly. The lecture also delves into the nonlinear conjugate gradient method, highlighting the differences from the ordinary CG method. Additionally, it explores the line search goal and the geometric interpretation of singular value decomposition (SVD) and eigenvalue decomposition (EVD).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.