Lecture

Acceleration and geodesics

Description

This lecture introduces the concept of acceleration along a curve on a manifold induced by a connection, defining it as the covariant derivative of the curve's velocity. It explains how a curve with zero acceleration for all times is called a geodesic, generalizing the notion of straight lines to manifolds, illustrated with the example of a great circle on a sphere.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.