**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Homotopical Algebra: (Co)Limits

Description

This lecture covers the concept of (co)limits in homotopical algebra, exploring the relationship between functors in small categories and the colimits and limits. The instructor discusses the simplex category, functor relations, and special cases. The lecture delves into the universal properties of colimits and limits, providing insights into the structure maps and terminal objects. Additionally, the lecture presents natural isomorphisms and the intuition behind (co)limits. The session concludes with a detailed explanation of pushouts and their significance in homotopical algebra.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (125)

Model category

In mathematics, particularly in homotopy theory, a model category is a with distinguished classes of morphisms ('arrows') called 'weak equivalences', 'fibrations' and 'cofibrations' satisfying certain axioms relating them. These abstract from the category of topological spaces or of chain complexes ( theory). The concept was introduced by . In recent decades, the language of model categories has been used in some parts of algebraic K-theory and algebraic geometry, where homotopy-theoretic approaches led to deep results.

Group (mathematics)

In mathematics, a group is a non-empty set with an operation that satisfies the following constraints: the operation is associative, has an identity element, and every element of the set has an inverse element. Many mathematical structures are groups endowed with other properties. For example, the integers with the addition operation is an infinite group, which is generated by a single element called 1 (these properties characterize the integers in a unique way).

GF(2)

(also denoted , Z/2Z or ) is the finite field of two elements (GF is the initialism of Galois field, another name for finite fields). Notations Z_2 and may be encountered although they can be confused with the notation of 2-adic integers. GF(2) is the field with the smallest possible number of elements, and is unique if the additive identity and the multiplicative identity are denoted respectively 0 and 1, as usual. The elements of GF(2) may be identified with the two possible values of a bit and to the boolean values true and false.

Functor

In mathematics, specifically , a functor is a mapping between . Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which is applied.

Finite field

In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number. The order of a finite field is its number of elements, which is either a prime number or a prime power.

Related lectures (512)

Acyclic Models: Cup Product and CohomologyMATH-506: Topology IV.b - cohomology rings

Covers the cup product on cohomology, acyclic models, and the universal coefficient theorem.

Natural Transformations in Algebra

Explores natural transformations in algebra, defining functors and isomorphisms.

Homotopical Algebra

Covers the theory of groups and homotopical algebra, emphasizing natural transformations, identities, and isomorphism of categories.

Limits and Colimits in Functor CategoriesMATH-436: Homotopical algebra

Explores limits and colimits in functor categories, focusing on equalizers, pullbacks, and their significance in category theory.

Group CohomologyMATH-506: Topology IV.b - cohomology rings

Covers the concept of group cohomology, focusing on chain complexes, cochain complexes, cup products, and group rings.