**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Kinematics and Dynamics of Rigid Bodies: Haltère and Yoyo

Description

This lecture covers the kinematics and dynamics of rigid bodies, focusing on the Haltère system pulled by a wire and the Yoyo system. The instructor explains the forces, accelerations, and equations of motion for both systems, emphasizing the concepts of static friction and moment of inertia. Various scenarios are analyzed, such as the movement of the Haltère without slipping and the rotation of the Yoyo. The lecture concludes with a detailed discussion on the equilibrium conditions and the calculation of the moment of inertia for different body configurations.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

PHYS-101(f): General physics : mechanics

Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr

Instructors (2)

Related concepts (84)

Rigid body

In physics, a rigid body, also known as a rigid object, is a solid body in which deformation is zero or negligible. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass. In the study of special relativity, a perfectly rigid body does not exist; and objects can only be assumed to be rigid if they are not moving near the speed of light.

Rigid body dynamics

In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces. The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference frames attached to each body. This excludes bodies that display fluid, highly elastic, and plastic behavior.

Euler's equations (rigid body dynamics)

In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. Their general vector form is where M is the applied torques and I is the inertia matrix. The vector is the angular acceleration. Again, note that all quantities are defined in the rotating reference frame.

Inertia

Inertia is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law of motion. After some other definitions, Newton states in his first law of motion: LAW I. Every object perseveres in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed thereon.

Mechanics

Mechanics (from Ancient Greek: μηχανική, mēkhanikḗ, "of machines") is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to objects result in displacements or changes of an object's position relative to its environment. Theoretical expositions of this branch of physics has its origins in Ancient Greece, for instance, in the writings of Aristotle and Archimedes (see History of classical mechanics and Timeline of classical mechanics).