**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Person# Andrea Thamm

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related units

Loading

Courses taught by this person

Loading

Related research domains

Loading

Related publications

Loading

People doing similar research

Loading

Related publications (6)

Loading

Loading

Loading

Courses taught by this person

No results

Related research domains (8)

People doing similar research (75)

Higgs boson

The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in

Standard Model

The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetic, weak and strong interactions – excluding gravity) in the universe and cla

Goldstone boson

In particle and condensed matter physics, Goldstone bosons or Nambu–Goldstone bosons (NGBs) are bosons that appear necessarily in models exhibiting spontaneous breakdown of continuous symmetries. Th

Related units (2)

We use an effective Lagrangian approach to address the question of the dynamics of electroweak symmetry breaking in the Standard Model (SM) and its relation to the hierarchy problem. Composite Higgs models provide a solution by describing the recently discovered Higgs-like scalar particle as a composite pseudo Nambu-Goldstone boson that dissolves into its constituents above a certain high energy scale. We discuss many features of the low energy description of composite Higgs models and present an explicit realisation in a flat extra dimension showing explicitly that top partners with masses below 1TeV are expected in a natural theory. Naturalness requires New Physics not much above the weak scale and hence motivates the search for direct and indirect evidence of physics beyond the SM at the LHC and future colliders. As an indirect probe at the LHC, we propose a dedicated analysis of single top production in association with a Higgs boson to lift the degeneracy in the sign of the top Yukawa coupling. We move on to an extensive study of WW scattering, double and triple Higgs production at future linear colliders to estimate their impact on the parameter space of a strongly interacting Higgs boson. Direct probes of New Physics at the LHC include the search for heavy vectors and fermions. We introduce a model-independent strategy to study narrow resonances which we apply to a heavy vector triplet of the SM for illustration. We conclude by summarising current constraints and the expected reach of future colliders on the parameter space of a minimal composite Higgs model. This thesis is based on the papers in Refs. [1–4].

Duccio Pappadopulo, Andrea Thamm, Riccardo Torre, Andrea Wulzer

We introduce a model-independent strategy to study narrow resonances which we apply to a heavy vector triplet of the Standard Model (SM) group for illustration. The method is based on a simplified phenomenological Lagrangian which reproduces a large class of explicit models. Firstly, this allows us to derive robust model-independent phenomenological features and, conversely, to identify the peculiarities of different explicit realizations. Secondly, limits on sigma x BR can be converted into bounds on a few relevant parameters in a fully analytic way, allowing for an interpretation in any given explicit model. Based on the available 8TeV LHC analyses, we derive current limits and interpret them for vector triplets arising in weakly coupled (gauge) and strongly coupled (composite) extensions of the SM. We point out that a model-independent limit setting procedure must be based on purely on-shell quantities, like sigma x BR. Finite width effects altering the limits can be considerably reduced by focusing on the on-shell signal region. We illustrate this aspect with a study of the invariant mass distribution in di-lepton searches and the transverse mass distribution in lepton-neutrino final states. In addition to this paper we provide a set of online tools available at a dedicated webpage [1].

Roberto Contino, Duccio Pappadopulo, Riccardo Rattazzi, Andrea Thamm

We study the impact of Higgs precision measurements at a high-energy and high-luminosity linear electron positron collider, such as CLIC or the ILC, on the parameter space of a strongly interacting Higgs boson. Some combination of anomalous couplings are already tightly constrained by current fits to electroweak observables. However, even small deviations in the cross sections of single and double Higgs production, or the mere detection of a triple Higgs final state, can help establish whether it is a composite state and whether or not it emerges as a pseudo-Nambu-Goldstone boson from an underlying broken symmetry. We obtain an estimate of the ILC and CLIC sensitivities on the anomalous Higgs couplings from a study of W W scattering and h h production which can be translated into a sensitivity on the compositeness scale 4 pi f, or equivalently on the degree of compositeness xi = v(2)/f(2). We summarize the current experimental constraints, from electroweak data and direct resonance searches, and the expected reach of the LHC and CLIC on xi and on the scale of the new resonances.