Patterning of micro- and nanometer scale structures by means of nanostencils (shadow masks) is increasingly being used as a simple, clean and low-cost alternative to photolithography. It can be shown, that sub-100-nm scale features can be fabricated through 100-nm thick membranes. Currently, large area pattern transfer using nanostencil lithography is limited by the mechanical stability of the shadow-mask membrane itself. The reason is that the deposited material induces undesirable stress in the membrane causing excessive bending or breakage and consequent loss in dimensional control. In this contribution, a remedy for the fabrication and application of nanostencils that are suitable for the creation of high-density nanopatterns on large surface areas is presented. The improved nanostencils incorporate in-situ, local stabilization structures increasing their moment of inertia, I, which is the structural property directly related to deformability.
Jürgen Brugger, Giovanni Boero, Xia Liu, Ana Conde Rubio, Samuel Tobias Howell
Jürgen Brugger, Samuel Tobias Howell