**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path

Abstract

The spatially resolved reflectance of turbid media is studied at short source–detector separations (approximately one transport mean free path) with Monte Carlo simulations. For such distances we found that the first and second moments of the phase function play a significant role in the reflectance curve, whereas the effect of higher-order moments is weak. Second-order similarity relations are tested and are found efficient at reducing the number of relevant parameters necessary to predict the reflectance. Indeed, only the four following parameters are necessary: the refractive index, the absorption coefficient, the reduced scattering coefficient, and a phase function parameter γ that depends on the first and second moments of the phase function. For media of known γ, the absorption and reduced scattering coefficients can be determined from the intensity and the slope of the log of the reflectance, measured at a single distance. Other empirical properties of the reflectance are derived from the simulations, using short-distance measurements, which provide clues for determining the scattering and absorption properties. In particular, the slope of the square root of the reflectance does not depend on the absorption coefficient but depends on both the reduced scattering coefficient and the phase function parameter γ.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (33)

Related MOOCs (22)

Related publications (43)

Attenuation coefficient

The linear attenuation coefficient, attenuation coefficient, or narrow-beam attenuation coefficient characterizes how easily a volume of material can be penetrated by a beam of light, sound, particles, or other energy or matter. A coefficient value that is large represents a beam becoming 'attenuated' as it passes through a given medium, while a small value represents that the medium had little effect on loss. The SI unit of attenuation coefficient is the reciprocal metre (m−1).

Absorption spectroscopy

Absorption spectroscopy refers to spectroscopic techniques that measure the absorption of electromagnetic radiation, as a function of frequency or wavelength, due to its interaction with a sample. The sample absorbs energy, i.e., photons, from the radiating field. The intensity of the absorption varies as a function of frequency, and this variation is the absorption spectrum. Absorption spectroscopy is performed across the electromagnetic spectrum.

Reflectance

The reflectance of the surface of a material is its effectiveness in reflecting radiant energy. It is the fraction of incident electromagnetic power that is reflected at the boundary. Reflectance is a component of the response of the electronic structure of the material to the electromagnetic field of light, and is in general a function of the frequency, or wavelength, of the light, its polarization, and the angle of incidence. The dependence of reflectance on the wavelength is called a reflectance spectrum or spectral reflectance curve.

Synchrotrons and X-Ray Free Electron Lasers (part 1)

The first MOOC to provide an extensive introduction to synchrotron and XFEL facilities and associated techniques and applications.

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Volumetric 3D printing is a novel technique that offers promising new perspectives in tissue engineering. In volumetric 3D printing, photosensitive gels or liquids are solidified by projecting light patterns via reverse tomography. Recent results show that ...

Giulia Tagliabue, Fateme Kiani Shahvandi, Alan Richard Bowman, Jiaming Ma

This dataset accompanies the publication "Best practices in measuring absorption at the macro- and microscale" published in APL Photonics. The data can be used to reproduce original plots in figures 1-4 in the main text and all original plots in the suppor ...

Biomass burning emissions often contain brown carbon (BrC), which represents a large family of light-absorbing organics that are chemically complex, thus making it difficult to estimate their absorption of incoming solar radiation, resulting in large uncer ...