Deformation mechanism in nanocrystalline FCC metals studied by atomistic simulations
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Nanocrystalline (NC) metals have attracted widespread interest in materials science due to their high strength compared to coarse-grained counterparts. It is well know that during uniaxial deformation, the stress-strain behaviour exhibits an extraordinary ...
Integrated circuit packaging technology has become a prime design consideration for the develop-ment of electronic system concepts. One key issue is the bonding layer between chip and substrate. Currently, high-lead solder materials are being used, which a ...
The tensile elongation of an < 011 > oriented columnar nanocrystalline pure iron structure at a temperature of 300 K has been simulated by molecular dynamics (MD). The simulated sample contains 4.3 x 10(6) atoms and has been subject to free elongation alon ...
Earthquakes are the result of slip along faults and are due to the decrease of rock frictional strength (dynamic weakening) with increasing slip and slip rate. Friction experiments simulating the abrupt accelerations (>>10 m/s(2)), slip rates (similar to 1 ...
Metal fatigue during cyclic loading puts an endurance limit on most of today's technology. It impacts the reliability of metallic components used for transportation, electronic devices and energy production because fatigue failure can occur without any app ...
We study the mobility law of dislocations in aluminum as an important building block for the development of a multiscale method that couples an atomistic model with discrete dislocation dynamics in 3d (\eg CADD3d). Straight dislocations of arbitrary charac ...
In the light of growing concerns for the climate change, it is of particular interest for governments to encourage efficient capture and safe storage of large amounts of carbon dioxide in the subsurface. In this perspective and in order to accurately predi ...
The role of pre-existing mobile and immobile dislocation densities on the evolution of geometrical necessary dislocation densities (GNDs) during cyclic fatigue in shear is studied using a continuum dislocation-based model incorporated in a crystal plastici ...
The grain boundary network evolution of 316L austenitic steel powder during its densification by hot isostatic pressing (HIPing) was investigated. While the as-received powder contained a network of random high angle grain boundaries, the fully consolidate ...
The two-dimensional discrete dislocation dynamics (2D DD) method, consisting of parallel straight edge dislocations gliding on independent slip systems in a plane strain model of a crystal, is often used to study complicated boundary value problems in crys ...