This paper proposes, the investigation of the Suspended Gate Field-Effect Transistor (SG-FET) small-slope switch based on a hybrid numerical simulation approach combining ANSYSTM Multiphysics and ISE-DESSISTM in a self-consistent system. The proposed numerical simulations uniquely enable the investigation of the behavior and the physics of complex micro-electro-mechanical/solid-state devices, such as the SG-FET. Abrupt switching as well as the effect of trapped charges in the gate dielectric are demonstrated. The numerical data serve to calibrate an analytical EKV-based SG-FET model, which is then used to design and originally simulate a sub-micron (90 nm) scaled SG-FET complementary inverter. It is shown that, due to abrupt switching in the subthreshold region and electro-mechanical hysteresis, the SG-FET inverter could deliver a significant power saving (1-2 decades reduction of inverter peak current and practically no leakage power) compared to traditional CMOS inverter.
Mihai Adrian Ionescu, Igor Stolichnov, Ali Saeidi, Teodor Rosca, Sadegh Kamaei Bahmaei, Eamon Patrick O'Connor, Matteo Cavalieri, Carlotta Gastaldi