Bousfield localizationIn , a branch of mathematics, a (left) Bousfield localization of a replaces the model structure with another model structure with the same cofibrations but with more weak equivalences. Bousfield localization is named after Aldridge Bousfield, who first introduced this technique in the context of localization of topological spaces and spectra. Given a class C of morphisms in a M the left Bousfield localization is a new model structure on the same category as before.
Banach spaceIn mathematics, more specifically in functional analysis, a Banach space (pronounced ˈbanax) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space. Banach spaces are named after the Polish mathematician Stefan Banach, who introduced this concept and studied it systematically in 1920–1922 along with Hans Hahn and Eduard Helly.
Algebraic spaceIn mathematics, algebraic spaces form a generalization of the schemes of algebraic geometry, introduced by Michael Artin for use in deformation theory. Intuitively, schemes are given by gluing together affine schemes using the Zariski topology, while algebraic spaces are given by gluing together affine schemes using the finer étale topology. Alternatively one can think of schemes as being locally isomorphic to affine schemes in the Zariski topology, while algebraic spaces are locally isomorphic to affine schemes in the étale topology.
Alain ConnesAlain Connes (alɛ̃ kɔn; born 1 April 1947 in Draguignan) is a French mathematician, known for his contributions to the study of operator algebras and noncommutative geometry. He is a professor at the Collège de France, Institut des Hautes Études Scientifiques, Ohio State University and Vanderbilt University. He was awarded the Fields Medal in 1982. Alain Connes attended high school at fr in Marseille, and was then a student of the classes préparatoires in fr.
Algebraic geometryAlgebraic geometry is a branch of mathematics which classically studies zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations.
Sequentially completeIn mathematics, specifically in topology and functional analysis, a subspace S of a uniform space X is said to be sequentially complete or semi-complete if every Cauchy sequence in S converges to an element in S. X is called sequentially complete if it is a sequentially complete subset of itself. Every topological vector space is a uniform space so the notion of sequential completeness can be applied to them. A bounded sequentially complete disk in a Hausdorff topological vector space is a Banach disk.
Nisnevich topologyIn algebraic geometry, the Nisnevich topology, sometimes called the completely decomposed topology, is a Grothendieck topology on the category of schemes which has been used in algebraic K-theory, A1 homotopy theory, and the theory of motives. It was originally introduced by Yevsey Nisnevich, who was motivated by the theory of adeles. A morphism of schemes is called a Nisnevich morphism if it is an étale morphism such that for every (possibly non-closed) point x ∈ X, there exists a point y ∈ Y in the fiber f−1(x) such that the induced map of residue fields k(x) → k(y) is an isomorphism.
Descent (mathematics)In mathematics, the idea of descent extends the intuitive idea of 'gluing' in topology. Since the topologists' glue is the use of equivalence relations on topological spaces, the theory starts with some ideas on identification. The case of the construction of vector bundles from data on a disjoint union of topological spaces is a straightforward place to start. Suppose X is a topological space covered by open sets Xi. Let Y be the disjoint union of the Xi, so that there is a natural mapping We think of Y as 'above' X, with the Xi projection 'down' onto X.
Grothendieck topologyIn , a branch of mathematics, a Grothendieck topology is a structure on a category C that makes the objects of C act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site. Grothendieck topologies axiomatize the notion of an open cover. Using the notion of covering provided by a Grothendieck topology, it becomes possible to define sheaves on a category and their cohomology. This was first done in algebraic geometry and algebraic number theory by Alexander Grothendieck to define the étale cohomology of a scheme.
Derived algebraic geometryDerived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras (over ), simplicial commutative rings or -ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness (e.g., Tor) of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements.