Energy-Efficient Indoor Search by Swarms of Simulated Flying Robots Without Global Information
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
There is a growing interest in unmanned aerial vehicles (UAVs) grasping, perching, and interacting with their surroundings by means of claws, arms, hooks, and other appendages. While multirotor vehicles can slowly lower onto a target object and grasp it, w ...
The slogan “robots will pervade our environment” has become a reality. Drones and ground robots are used for commercial purposes while semi-autonomous driving systems are standard accessories to traditional cars. However, while our eyes have been riveted o ...
Order, regularities, and patterns are ubiquitous around us. A flock of birds maneuvering in the sky, the self-organization of social insects, a global pandemic or a traffic jam are examples of complex systems where the macroscopic patterns arise from the m ...
Flying robots require a combination of accuracy and low latency in their state estimation in order to achieve stable and robust flight. However, due to the power and payload constraints of aerial platforms, state estimation algorithms must provide these qu ...
Bringing advantages of parallelism and robustness, distributed robotic systems have become an active subject of research since many years. Yet, the progress in that direction with Autonomous Underwater Vehicles (AUVs) has been limited. This project aims at ...
Perching in unmanned aerial vehicles (UAVs) offers the possibility of extending the range of aerial robots beyond the limits of their batteries. It has been a topic of intense study for multirotor UAVs. Perching in winged UAVs is harder because a kinetic e ...
Place recognition is an essential capability for robotic autonomy. While ground robots observe the world from generally similar viewpoints over repeated visits, other robots, such as small aircraft, experience far more different viewpoints, requiring place ...
The aim of this project was to assemble, interconnect, and program a group of ground robots. The objective of the robot control is to cooperatively complete a set of tasks where each task represents a goal location that needs to be visited. For the hardwar ...
This chapter presents an overview of an original methodology to design optimum adaptive structures with minimum whole-life energy. Structural adaptation is here understood as a simultaneous change of the shape and internal load-path (i.e. internal forces). ...