Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
A dual mode microscope is developed to study morphological evolution of mouse myoblast cells under simulated microgravity in real time. Microscope operates in Digital Holographic Microscopy (DHM) and widefield epifluorescence microscopy modes in a time sequential basis. DHM provides information on real time cellular morphology. EGFP transfected actin filaments in mouse myoblast cells function as the reporter for the fluorescence microscopy mode. Experimental setup is fixed in the RPM to observe microgravity induced dynamic changes in live cells. Initial results revealed two different modifications. Disorganized structures become visible in the formed lamellipodias, and proteins accumulate in the perinuclear region.
The organisation of molecules into dynamic cells, and collaboration of many of those cells over a billion years led to the evolution of human life. During the last century, biologists then began to unravel the marvels of cellular organisation with ever in ...
Suliana Manley, Giorgio Tortarolo
Pablo Rivera Fuentes, Adam Miklos Eördögh, Annabell Martin