**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Extra dimensions as an alternative to Higgs mechanism?

2001

Journal paper

Journal paper

Abstract

We show that a pure gauge theory in higher dimensions may lead to an effective lower-dimensional theory with massive vector field, broken gauge symmetry and no fundamental Higgs boson. The mechanism we propose employs the localization of a vector field on a lower-dimensional defect. No nonzero expectation values of the vector field components along extra dimensions are required. New possibilities for the solution to the gauge hierarchy problem are discussed. © 2001 Elsevier Science B.V.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related publications (22)

Loading

Loading

Loading

Related concepts (14)

Gauge theory

In physics, a gauge theory is a field theory in which the Lagrangian is invariant under local transformations according to certain smooth families of operations (Lie groups).
The term gauge refers t

Higgs mechanism

In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one o

Hierarchy problem

In theoretical physics, the hierarchy problem is the problem concerning the large discrepancy between aspects of the weak force and gravity. There is no scientific consensus on why, for example, the

In the context of warped extra-dimensional models which address both the Planck-weak- and flavor-hierarchies of the Standard Model (SM), it has been argued that certain observables can be calculated within the 5D effective field theory only with the Higgs field propagating in the bulk of the extra dimension, just like other SM fields. The related studies also suggested an interesting form of decoupling of the heavy Kaluza-Klein (KK) fermion states in the warped 5D SM in the limit where the profile of the SM Higgs approaches the IR brane. We demonstrate that a similar phenomenon occurs when we include the mandatory KK excitations of the SM Higgs in loop diagrams giving dipole operators for SM fermions, where the earlier work only considered the SM Higgs (zero mode). In particular, in the limit of a quasi IR-localized SM Higgs, the effect from summing over KK Higgs modes is unsuppressed (yet finite), in contrast to the naive expectation that KK Higgs modes decouple as their masses become large. In this case, a wide range of KK Higgs modes have quasi-degenerate masses and enhanced couplings to fermions relative to those of the SM Higgs, which contribute to the above remarkable result. In addition, we find that the total contribution from KK Higgs modes in general can be comparable to that from the SM Higgs alone. It is also interesting that KK Higgs couplings to KK fermions of the same chirality as the corresponding SM modes have an unsuppressed overall contribution, in contrast to the result from the earlier studies involving the SM Higgs. Our studies suggest that KK Higgs bosons are generally an indispensable part of the warped 5D SM, and their phenomenology such as signals at the LHC are worth further investigation.

We study higher-dimensional non-supersymmetric orbifold models where the Higgs field is identified with some internal component of a gauge field. We address two important and related issues that constitute severe obstacles towards model building within this type of constructions: the possibilities of achieving satisfactory Yukawa couplings and Higgs potentials. We consider models where matter fermions are localized at the orbifold fixed-points and couple to additional heavy fermions in the bulk. When integrated out, the latter induce tree-level non-local Yukawa interactions and a quantum contribution to the Higgs potential that we explicitly evaluate and analyse. The general features of these highly constrained models are illustrated through a minimal but potentially realistic five-dimensional example. Finally, we discuss possible cures for the persisting difficulties in achieving acceptable top and Higgs masses. In particular, we consider in some detail the effects induced in these models by adding localized kinetic terms for gauge fields. (C) 2003 Elsevier B.V. All rights reserved.

2003Recent proposals of large and infinite extra dimensions triggered a strong research activity in theories in which our universe is considered as a sub-manifold of some higher-dimensional space-time, a so-called 3-brane. In this context, it is generally assumed that some mechanism is at work which binds Standard Model particles to the 3-brane, an effect often referred to as the localization of matter on the brane. Gravity, however, is allowed to propagate in general also in the extra dimensions. As demonstrated by Randall and Sundrum in 1999, it is also possible to localize gravity itself on a 3-brane. In the setup they proposed. the 3-brane is realized as a singular domain wall separating two patches of 3-dimensional anti-de-Sitter (AdS5) space-time. The potential between two test masses on the brane at distances larger than the AdS5-radius was shown to be the usual 4-dimensional Newtonian 1/r potential with strongly suppressed corrections. The model of Randall and Sundrum, usually referred to as the Randall-Sundrum II setup, constitutes the center of interest for this thesis. The main goal of this work is to find possible generalizations to higher dimensions of the simple setup considered by Randall and Sundrum. One of the motivations for such a generalization is that a realistic theory should possibly be able to explain the chiral nature of 4-dimensional fermions on the brane. One way to explain chiral fermions from higher dimensions is to consider 3-braves identified with the cores of topological defects located in a higher-dimensional transverse space. Naturally a richer topological structure of the field configuration in transverse space provides the possibility of a more realistic spectrum of chiral fermions localized on the 3-brane. After two introductory chapters on extra dimensions and non-factorizable geometries which are relevant for the Randall-Sundrum II model, we briefly discuss basics of topological defects in the following third chapter. In the rest of the third chapter we consider various solutions to higher-dimensional Einstein equations coupled to a series of physically different sources and discuss their properties of localization of gravity. Due to their asymptotic nature, these solutions are only valid far from the cores of the defects in transverse space. Therefore, it seems reasonable to complement the consideration by presenting a particular numerical example of a solution to the Einstein equations coupled to a set of scalar and gauge fields: this solution describes a 3-brave realized as a 't Hooft-Polyakov monopole residing in the 3-dimensional transverse space of a 7-dimensional space-time. The last chapter of this work is dedicated to the study of a modification of the original Randall-Sundrum II model of another kind. The motivation is given by the geodesic incompleteness of the latter scenario with respect to time-like and light-like geodesics. We will describe a model which resembles the Randall-Sundrurn II model with respect to its properties of gravity localization but with the advantage that the underlying space-time manifold is geodesically complete. Parts of the calculations related to the properties of gravity at low energies in this model are rather technical in nature and we therefore preferred to assemble them in several appendices. We finally add some concluding remarks and discuss possible further developments.