Publication

Choice probability generating functions

Michel Bierlaire
2010
Report or working paper
Abstract

This paper establishes that every random utility discrete choice model (RUM) has a representation that can be characterized by a choice-probability generating function (CPGF) with specific properties, and that every function with these specific properties is consistent with a RUM. The choice probabilities from the RUM are obtained from the gradient of the CPGF. Mixtures of RUM are characterized by logarithmic mixtures of their associated CPGF. The paper relates CPGF to multivariate extreme value distributions, and reviews and extends methods for constructing generating functions for applications. The choice probabilities of any ARUM may be approximated by a cross-nested logit model. The results for ARUM are extended to competing risk survival models.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.